On Efficient and Statistical Quality Estimation for Data Annotation

Annotated data is an essential ingredient to train, evaluate, compare and productionalize machine learning models. It is therefore imperative that annotations are of high quality. For their creation, good quality management and thereby reliable quality estimates are needed. Then, if quality is insufficient during the annotation process, rectifying measures can be taken to improve it. For instance, project managers can use quality estimates to improve annotation guidelines, retrain annotators or catch as many errors as possible before release.
Quality estimation is often performed by having…Apple Machine Learning Research

Automatic Creative Selection with Cross-Modal Matching

Application developers advertise their Apps by creating product pages with App images, and bidding on search terms. It is then crucial for App images to be highly relevant with the search terms. Solutions to this problem require an image-text matching model to predict the quality of the match between the chosen image and the search terms. In this work, we present a novel approach to matching an App image to search terms based on fine-tuning a pre-trained LXMERT model. We show that compared to the CLIP model and a baseline using a Transformer model for search terms, and a ResNet model for…Apple Machine Learning Research

ContextQ: Generated Questions to Support Meaningful Parent-Child Dialogue While Co-Reading

Much of early literacy education happens at home with caretakers reading books to young children. Prior research demonstrates how having dialogue with children during co-reading can develop critical reading readiness skills, but most adult readers are unsure if and how to lead effective conversations. We present ContextQ, a tablet-based reading application to unobtrusively present auto-generated dialogic questions to caretakers to support this dialogic reading practice. An ablation study demonstrates how our method of encoding educator expertise into the question generation pipeline can…Apple Machine Learning Research

pfl-research: Simulation Framework for Accelerating Research in Private Federated Learning

Federated Learning (FL) is an emerging ML training paradigm where clients own their data and collaborate to train a global model without revealing any data to the server and other participants.
Researchers commonly perform experiments in a simulation environment to quickly iterate on ideas. However, existing open-source tools do not offer the efficiency required to simulate FL on larger and more realistic FL datasets. We introduce pfl-research, a fast, modular, and easy-to-use Python framework for simulating FL. It supports TensorFlow, PyTorch, and non-neural network models, and is tightly…Apple Machine Learning Research

KV-Runahead: Scalable Causal LLM Inference by Parallel Key-Value Cache Generation

Large Language Model or LLM inference has two phases, the prompt (or prefill) phase to output the first token and the extension (or decoding) phase to the generate subsequent tokens. In this work, we propose an efficient parallelization scheme, KV-Runahead to accelerate the prompt phase. The key observation is that the extension phase generates tokens faster than the prompt phase because of key-value cache (KV-cache). Hence, KV-Runahead parallelizes the prompt phase by orchestrating multiple processes to populate the KV-cache and minimizes the time-to-first-token (TTFT). Dual-purposing the…Apple Machine Learning Research

Generative Modeling with Phase Stochastic Bridges

This paper introduces a novel generative modeling framework grounded in phase space dynamics, taking inspiration from the principles underlying Critically Damped Langevin Dynamics (CLD). Leveraging insights from stochastic optimal control, we construct a favorable path measure in the phase space that proves highly advantageous for generative sampling. A distinctive feature of our approach is the early-stage data prediction capability within the context of propagating generating Ordinary Differential Equations (ODEs) or Stochastic Differential Equations (SDEs) processes. This early prediction…Apple Machine Learning Research

Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling

This paper has been accepted at the Data Problems for Foundation Models workshop at ICLR 2024.
Large language models are trained on massive scrapes of the web, which are often unstructured, noisy, and poorly phrased. Current scaling laws show that learning from such data requires an abundance of both compute and data, which grows with the size of the model being trained. This is infeasible both because of the large compute costs and duration associated with pre-training, and the impending scarcity of high-quality data on the web. In this work, we proposeWebRephrase Augmented Pre-training…Apple Machine Learning Research

Knowledge Transfer from Vision Foundation Models for Efficient Training of Small Task-specific Models

Vision Foundation Models (VFMs) pretrained on massive datasets exhibit impressive performance on various downstream tasks, especially with limited labeled target data. However, due to their high inference compute cost, these models cannot be deployed for many real-world applications. Motivated by this, we ask the following important question, “How can we leverage the knowledge from a large VFM to train a small task-specific model for a new target task with limited labeled training data?”, and propose a simple task-oriented knowledge transfer approach as a highly effective solution to this…Apple Machine Learning Research