FastVLM: Efficient Vision encoding for Vision Language Models

Scaling the input image resolution is essential for enhancing the performance of Vision Language Models (VLMs), particularly in text-rich image understanding tasks. However, popular visual encoders such as ViTs become inefficient at high resolutions due to the large number of tokens and high encoding latency. At different operational resolutions, the vision encoder of a VLM can be optimized along two axes: reducing encoding latency and minimizing the number of visual tokens passed to the LLM, thereby lowering overall latency. Based on a comprehensive efficiency analysis of the interplay…Apple Machine Learning Research

Disentangled Representational Learning with the Gromov-Monge Gap

Learning disentangled representations from unlabelled data is a fundamental challenge in machine learning. Solving it may unlock other problems, such as generalization, interpretability, or fairness. Although remarkably challenging to solve in theory, disentanglement is often achieved in practice through prior matching. Furthermore, recent works have shown that prior matching approaches can be enhanced by leveraging geometrical considerations, e.g., by learning representations that preserve geometric features of the data, such as distances or angles between points. However, matching the prior…Apple Machine Learning Research

ACM Human-Computer Interaction Conference (CHI) 2025

Apple is presenting new research at the ACM annual conference on Human-Computer Interaction (CHI), which takes place in person in Yokohama, Japan, from April 26 to May 1. We are proud to again sponsor the conference, which brings together the scientific and industrial research communities focused on interactive technology. Below is an overview of Apple’s participation at CHI 2025.

Schedule
Stop by the Apple booth (304 & 305) in the Yokohama PACIFICO during exhibition hours. All times listed in GMT +9 (Japan Time):

Tuesday, April 29: 10:00 – 17:00
Wednesday, April 30: 10:00 -…Apple Machine Learning Research

Step-by-Step Diffusion: An Elementary Tutorial

We present an accessible first course on the mathematics of diffusion models and flow matching for machine learning. We aim to teach diffusion as simply as possible, with minimal mathematical and machine learning prerequisites, but enough technical detail to reason about its correctness. Unlike most tutorials on this subject, we take neither a Variational Auto Encoder (VAE) nor a Stochastic Differential Equations (SDE) approach. In fact, for the core ideas we will not need any SDEs, Evidence-Based-Lower-Bounds (ELBOs), Langevin dynamics, or even the notion of a score. The reader need only be…Apple Machine Learning Research

DART: Denoising Autoregressive Transformer for Scalable Text-to-Image Generation

Diffusion models have become the dominant approach for visual generation. They are trained by denoising a Markovian process which gradually adds noise to the input. We argue that the Markovian property limits the model’s ability to fully utilize the generation trajectory, leading to inefficiencies during training and inference. In this paper, we propose DART, a transformer-based model that unifies autoregressive (AR) and diffusion within a non-Markovian framework. DART iteratively denoises image patches spatially and spectrally using an AR model that has the same architecture as standard…Apple Machine Learning Research

Scaling Diffusion Language Models via Adaptation from Autoregressive Models

Diffusion Language Models (DLMs) have emerged as a promising new paradigm for text generative modeling, potentially addressing limitations of autoregressive (AR) models. However, current DLMs have been studied at a smaller scale compared to their AR counterparts and lack fair comparison on language modeling benchmarks. Additionally, training diffusion models from scratch at scale remains challenging. Given the prevalence of open-source AR language models, we propose adapting these models to build text diffusion models. We demonstrate connections between AR and diffusion modeling objectives and…Apple Machine Learning Research

Scaling Laws for Native Multimodal Models

Building general-purpose models that can effectively perceive the world through multimodal signals has been a long-standing goal. Current approaches involve integrating separately pre-trained components, such as connecting vision encoders to LLMs and continuing multimodal training. While such approaches exhibit remarkable sample efficiency, it remains an open question whether such late-fusion architectures are inherently superior. In this work, we revisit the architectural design of native multimodal models (NMMs) – those trained from the ground up on all modalities – and conduct an extensive…Apple Machine Learning Research

EC-DIT: Scaling Diffusion Transformers with Adaptive Expert-Choice Routing

Diffusion transformers have been widely adopted for text-to-image synthesis. While scaling these models up to billions of parameters shows promise, the effectiveness of scaling beyond current sizes remains underexplored and challenging. By explicitly exploiting the computational heterogeneity of image generations, we develop a new family of Mixture-of-Experts (MoE) models (EC-DIT) for diffusion transformers with expert-choice routing. EC-DIT learns to adaptively optimize the compute allocated to understand the input texts and generate the respective image patches, enabling heterogeneous…Apple Machine Learning Research

CoMotion: Concurrent Multi-Person 3D Motion

We introduce an approach for detecting and tracking detailed 3D poses of multiple people from a single monocular camera stream. Our system maintains temporally coherent predictions in crowded scenes filled with difficult poses and occlusions. Our model performs both strong per-frame detection and a learned pose update to track people from frame to frame. Rather than match detections across time, poses are updated directly from a new input image, which enables online tracking through occlusion. We train on numerous image and video datasets leveraging pseudo-labeled annotations to produce a…Apple Machine Learning Research