Understanding social biases through the text-to-image generation lens

Understanding social biases through the text-to-image generation lens

This research paper was presented at the Sixth AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (AIES) (opens in new tab), a premier forum for discussion on the societal and ethical aspects of artificial intelligence.

The rise of text-to-image (T2I) generation has ushered in a new era of innovation, offering a broad spectrum of possibilities for creators, designers, and the everyday users of productivity software. This technology can transform descriptive text into remarkably realistic visual content, empowering users to enrich their work with vivid illustrative elements. However, beneath this innovation lies a notable concern—the potential inclusion of harmful societal biases.

These T2I models create images from the extensive web data on which they had been trained, and this data often lacks representation of different demographic groups and cultures and can even harbor harmful content. When these societal biases seep into AI-generated content, they perpetuate and amplify pre-existing societal problems, reinforcing them and creating a disconcerting cycle that undermines previous and current mitigation efforts.

Representation of gender, race, and age across occupations and personality traits

To tackle this problem, it is essential to rigorously evaluate these models across a variety of demographic factors and scenarios. In our paper, “Social Biases through the Text-to-Image Generation Lens (opens in new tab),” presented at AIES 2023 (opens in new tab), we conduct a thorough analysis for studying and quantifying common societal biases reflected in generated images. We focus on the portrayal of occupations, personality traits, and everyday situations across representations of gender, age, race, and geographical location. 

Microsoft Research Podcast

Collaborators: Holoportation™ communication technology with Spencer Fowers and Kwame Darko

Spencer Fowers and Kwame Darko break down how the technology behind Holoportation and the telecommunication device being built around it brings patients and doctors together when being in the same room isn’t an easy option and discuss the potential impact of the work.


For example, consider images that reinforce societal biases for the roles of CEO and housekeeper. These professions have been extensively studied as examples of stereotypical gender biases—where predominantly men are CEOs and women are housekeepers. For all such cases, we observed three different perspectives: 

  1. Real-world distribution: Relies on labor statistics, presenting distribution across various dimensions, such as gender, race, and age.
  1. Search engine results: Captures the distribution evident in search engine outcomes, reflecting contemporary portrayals. 
  1. Image generation results: Emphasizes the distribution observed in image generation outputs. 

We tested two T2I generators, DALLE-v2 and Stable Diffusion and compared them with 2022 data from the U.S. Bureau of Labor Statistics and results for a Google image search conducted in 2020, examining how women are represented across five different occupations. Notably, the analysis of generation models revealed a significant setback in representational fairness compared with data sourced from the U.S. Bureau of Labor Statistics (BLS) and a web image search (GIS) based on geographically referenced information. Notably, images generated by DALLE-v2 provide minimal representation of women in the professions of CEO and computer programmer. Conversely, in images generated by Stable Diffusion, women are consistently represented in the roles of nurses and housekeepers 100% of the time. Figure 1 illustrates our findings, and Figure 2 shows examples of images generated to show different occupations. 

A chart showing gender representation in percentage for DALLE-v2, Stable Diffusion, Google Image Search 2020, and BLS data. 
Figure 1. Gender representation for DALLE-v2, Stable Diffusion, Google Image Search 2020, and BLS data. 
Examples of generations for the professions of “computer programmer” and “housekeeper” using the DALL-E v2 and Stable Diffusion models.
Figure 2. A sample of the first four images generated for the professions of “computer programmer” and “housekeeper” using the DALL-E v2 and Stable Diffusion models. Notably, one gender is conspicuously absent across a distribution of 500 generated images. 

Even when using basic prompts like “person” without including an occupation, we observed that models can underrepresent certain demographic groups across age, race, and gender. When we analyzed DALLE-v2 and Stable Diffusion, both offered a limited representation of races other than white across a set of 500 generated images. Furthermore, the DALLE-v2 outputs revealed a remarkable lack of age diversity, with over 80% of the images depicting either adults who appeared to be between the ages 18 and 40 or children. This is illustrated in Figure 3.

Three charts showing gender, race, and age distribution as interpreted by human annotators for DALL-E v2 and Stable Diffusion models.
Figure 3. Gender, race, and age distribution as interpreted by human annotators and automated face processing within the context of image generation for the prompt “person.” 

Our study also examines biases of similar representations across positive and negative personality traits, revealing the subtleties of how these traits are depicted. While individuals of nonwhite races appear linked with positive attributes such as vigor, ambition, striving, and independence, they are also associated with negative traits like detachment, hardheartedness, and conceitedness. 

Representation of geographical locations in everyday scenarios 

Another aspect of bias that we studied pertains to the representation of diverse geographical locations in how models interpret everyday scenarios. We did this using such prompts as “a photo of a birthday party” or “a photo of a library.” Although it is difficult to discern the precise location of a generated photo, distinctions in these representations can still be measured between using a general prompt and a prompt that specifies a location, for example, “a photo of a birthday party in Colombia.” In the paper, we describe this experiment for the two most populous countries in each inhabited continent, considering everyday scenarios centering around events, places, food, institutions, community, and clothing. When models were given a general prompt, overall results indicated that images generated for countries like Nigeria, Papua New Guinea, and Ethiopia had the greatest difference between the prompt and the image, while images generated for Germany, the US, and Russia were the closest aligned to the general prompt. 

Subtle effects of using expanded prompts 

Many bias mitigation techniques rely on expanding the prompt to enrich and diversify the images that models generate. To tackle bias in AI-generated images, we applied prompt engineering (opens in new tab) to increase the likelihood that the image will reflect what’s specified in the prompt. We used prompt expansion, a type of prompt engineering, to add further descriptors to the initial general prompts and guide the model towards unbiased content. An example of prompt expansion would be “a portrait of a female doctor” instead of “a portrait of a doctor.” Our experiments proved that prompt expansion is predominantly effective in creating more specified content in AI-generated images. However, there are also unintended outcomes, particularly in terms of decreased diversity and image quality, as shown in Figure 4. 

Examples of generation output from DALL-E v2 for two prompts: “a portrait of an announcer” and “a portrait of a female announcer.”
Figure 4. Expanded prompts using descriptors like “female” can indeed yield more diverse depictions, but often at the cost of image variety and quality. 

Safeguarding against bias in T2I models

As T2I generation models become increasingly integrated into our digital ecosystems, it is paramount that we remain vigilant to the biases they may inadvertently perpetuate. This research underscores the profound importance of continually evaluating and refining these models. We hope that the outcomes and methodology presented in this study provide valuable insights for evaluating and building new generative models. We would like to emphasize the importance of fostering responsible development and ensuring representational fairness in this process. 

The post Understanding social biases through the text-to-image generation lens appeared first on Microsoft Research.

Read More

Incorporating chemists’ insight with AI models for single-step retrosynthesis prediction

Incorporating chemists’ insight with AI models for single-step retrosynthesis prediction

Retrosynthesis -

Retrosynthesis analysis is a critical task in organic chemistry and central to many important industries. It primarily involves decomposing a target molecule into commercially available molecules step by step. Since synthesis strategies can be quite diverse and strategic, retrosynthesis planning with expert knowledge has long been considered an “art.”

Recently, machine learning-based approaches have achieved promising results on this task, particularly in single-step retrosynthesis prediction. In retrosynthesis, a molecule can be represented as either a 2D graph or a 1D SMILES (simplified molecular-input line-entry system) sequence. SMILES is a notation system used to represent chemical structures using plain text, which consists of a sequence of characters to describe the arrangement of atoms, bonds, and rings within a molecule. SMILES can be considered a traversal on the corresponding molecular graph, as shown in Figure 1.

Retrosynthesis -
Figure 1: An example of molecular graph and SMILES string

Given the representations of molecules, most machine learning-based approaches employ encoder-decoder frameworks, where the encoder part encodes the molecular (the target product) sequence or graph as high dimensional vectors, and the decoder takes the output from the encoder and generates the output sequence (the predicted reactant) token-by-token autoregressively. 

Casting retrosynthesis analysis as a sequence decoding problem enables the use of deep neural architectures that are well-developed in machine translation or graph neural networks. While AI has made significant strides in predicting reactants, it’s crucial to acknowledge the expertise of human chemists. In real-world route scouting tasks, synthetic chemists rely on their professional experience and abstract understanding of underlying mechanisms. They often start with molecular substructures or fragments that are chemically similar to target molecules, providing clues for a series of chemical reactions that may yield the target product.

Our paper, Single-step retrosynthesis prediction by leveraging commonly preserved substructures (opens in new tab), proposes a novel approach that leverages commonly preserved substructures in organic synthesis. This approach incorporates chemists’ insight in retrosynthesis, bringing the AI model closer to the way human experts think.

Substructure extraction and modeling

In the context of organic chemistry, “substructures” refer to molecular fragments or smaller building blocks that are chemically similar or preserved within target molecules. These substructures serve as essential components for understanding the assembly of complex molecules and play a significant role in retrosynthesis analysis. 

Based on this concept, our framework consists of three main modules:

  1. Reaction Retrieval: This module retrieves similar reactions, given a product molecule as a query. It uses a learnable cross-lingual memory retriever to align reactants and products in high-dimensional vector space.
  2. Substructure Extraction: We extract the common substructures from the product molecule and the top cross-aligned candidates, based on molecular fingerprints. These substructures provide a reaction-level, fragment-to-fragment mapping between reactants and products.
  3. Substructure-level Sequence-to-Sequence Learning: We convert the original token-level sequence to a substructure-level sequence. The new input sequence includes the SMILES strings of the substructures followed by the SMILES strings of other fragments with virtual number labels. The output sequences are the fragments with virtual numbers. The virtual numbers are used to indicate the bond breaking/connecting site.
Retrosynthesis -
Figure 2: Method overview, with virtual number labeled atoms and substructures highlighted in green.

Unlike most existing work, our model only needs to predict the fragments connected to the substructure, thereby simplifying the prediction task, with the substructure part remaining unchanged. 

In the example shown in Figure 2, the substructure “COC(=O)Cc1cc2ccc(F)cc2[2cH]c1C.C[1SH](=O)=O” remains unchanged, and the model only needs to predict that the fragment “[2BH]2OC(C)(C)C(C)(C)O2.[1cH]1ccc(Br)nc1”. The substructure SMILES and the predicted fragment SMILES are then combined to form a complete reactants SMILES.

Spotlight: On-demand video

AI Explainer: Foundation models ​and the next era of AI

Explore how the transformer architecture, larger models and more data, and in-context learning have helped advance AI from perception to creation.


Retrosynthesis prediction

We analyzed our method using the USPTO full dataset (opens in new tab) and compared it to other notable works in the field. In almost every scenario, our method achieved comparable or better top-1 accuracy compared to previously tested methods. On the subset of data where substructures were successfully extracted, model performance significantly improved compared to the overall result. 

The improvement in our method can be attributed to two main factors:

  1. Our method managed to successfully extract substructures from 82.2% of all products on the USPTO full test dataset, demonstrating the general applicability of this approach. 
  2. We only needed to generate fragments connected to virtually labeled atoms in the substructures, which shortened the string representations of molecules and significantly lowered the number of atoms to be predicted.
Retrosynthesis -
Figure 3: Product molecule specific substructures. These reactants all contain phthalimide, with substructures highlighted in green.

A key aspect of our method for one-step retrosynthesis is the extraction of product-specific substructures. By doing so, we can better capture subtle structural changes from reactants to products that are unique to each reaction. Take phthalimide, a common heterocyclic substructure, as an example. We analyzed four exemplary reactions where the reactants contain phthalimide (see Figure 3). The extracted substructures vary among different reaction types, demonstrating the product-specific nature of the substructures.

In reaction (a) and reaction (b), phthalimide is not considered part of the substructure because it incorporates the reaction. However, in reaction (c) and reaction (d), the substructures are different, yet they both contain phthalimide. These results show that substructures are indeed product-specific, which aligns with our expectations.

Incorporating human insights into decision-making 

In addition, leveraging commonly preserved substructures offers another benefit: providing users with valuable insights for decision-making in retrosynthesis planning. When compared to existing methods, our approach can help human experts assess potential pathways and eliminate infeasible reactions using their chemistry knowledge. 

For each input product molecule, we extract multiple substructures from retrieved reactions, (see details in our paper) and for some cases, not all substructures are correct. As such, we can group predictions by substructures. As shown in Figure 4, the predicted groups of reactants and reactions offer valuable information to experts. For instance, they can refine predictions by comparing reactions associated with retrieved candidates, making our predictions more explainable and trustworthy compared to existing “black-box” models.

Retrosynthesis -
Figure 4: Substructures and predictions grouped by substructures. The retrieved candidate reactants (#2, #3 and #4) indicate that the substructures extracted from the retrieved reactant #1 are likely incorrect, because the triple bond is likely a reaction site. The extracted substructures are highlighted in green.

We hope that our work will spark interest in this fast-growing and highly interdisciplinary area of retrosynthesis prediction and other related topics. By pushing the boundaries of what’s possible in chemistry and machine learning, we can continue to make strides in understanding complex chemical reactions and designing more efficient retrosynthetic strategies.

The post Incorporating chemists’ insight with AI models for single-step retrosynthesis prediction appeared first on Microsoft Research.

Read More

Rethinking trust in direct messages in the AI era

Rethinking trust in direct messages in the AI era

Rethinking trust in direct messages in the AI era - blog hero showing a flowchart diagram

This blog post is a part of a series exploring our research in privacy, security, and cryptography. For the previous post, see https://www.microsoft.com/en-us/research/blog/research-trends-in-privacy-security-and-cryptography. While AI has the potential to massively increase productivity, this power can be used equally well for malicious purposes, for example, to automate the creation of sophisticated scam messages. In this post, we explore threats AI can pose for online communication ecosystems and outline a high-level approach to mitigating these threats.

Communication in the age of AI

Concerns regarding the influence of AI on the integrity of online communication are increasingly shared by policymakers, AI researchers, business leaders, and other individuals. These concerns are well-founded, as benign AI chatbots can be easily repurposed to impersonate people, help spread misinformation, and sway both public opinion and personal beliefs. So-called “spear phishing” attacks, which are personalized to the target, have proved devastatingly effective. This is particularly true if victims are not using multifactor authentication, meaning an attacker who steals their login credentials with a phishing mail could access authentic services with those credentials. This opportunity has not been missed by organized cybercrime; AI-powered tools marketed to scammers and fraudsters are already emerging. This is disturbing, because democratic systems, business integrity, and interpersonal relationships all hinge on credible and effective communication—a process that has notably migrated to the digital sphere.

As we enter a world where people increasingly interact with artificial agents, it is critical to acknowledge that these challenges from generative AI are not merely hypothetical. In the context of our product offerings at Microsoft, they materialize as genuine threats that we are actively addressing. We are beginning to witness the impact of AI in generating highly specific types of text (emails, reports, scripts, code) in a personalized, automated, and scalable manner. In the workplace, AI-powered tools are expected to bring about a huge increase in productivity, allowing people to focus on the more creative parts of their work rather than tedious, repetitive details. In addition, AI-powered tools can improve productivity and communication for people with disabilities or among people who do not speak the same language.  

In this blog post, we focus on the challenge of establishing trust and accountability in direct communication (between two people), such as email, direct messages on social media platforms, SMS, and even phone calls. In all these scenarios, messaging commonly takes place between individuals who share little or no prior context or connection, yet those messages may carry information of high importance. Some examples include emails discussing job prospects, new connections from mutual friends, and unsolicited but important phone calls. The communication may be initiated on behalf of an organization or an individual, but in either case we encounter the same problem: if the message proves to be misleading, malicious, or otherwise inappropriate, holding anyone accountable for it is impractical, may require difficult and slow legal procedures, and does not extend across different communication platforms. 

As the scale of these activities increases, there is also a growing need for a flexible cross-platform accountability mechanism that allows both the message sender and receiver to explicitly declare the nature of their communication. Concretely, the sender should be able to declare accountability for their message and the receiver should be able to hold the sender accountable if the message is inappropriate.

Elements of accountability 

The problems outlined above are not exactly new, but recent advances in AI have made them more urgent. Over the past several years, the tech community, alongside media organizations and others, have investigated ways to distinguish whether text or images are created by AI; for example, C2PA is a type of watermarking technology, and one possible solution among others. With AI-powered tools increasingly being used in the workplace, Microsoft believes that it will take a combination of approaches to provide the highest value and most transparency to users. 

Focusing on accountability is one such approach. We can start by listing some properties we expect of any workable solution:

  • People and organizations need to be able to declare accountability for the messages they send. 
  • Receivers need to be able to hold the senders accountable if the message is inappropriate or malicious, to protect future potential victims. 
  • There must exist an incentive for the sender to declare accountability. 
  • The mechanism should only solve the accountability problem and nothing else. It must not have unintended side effects, such as a loss of privacy for honest participants. 
  • Receivers should not be required to register with any service. 
  • The accountability mechanism must be compatible with the plurality of methods people use to communicate today.

One way to build an accountability mechanism is to use a reputation system that verifies real-world identities, connecting our digital interactions to a tangible and ultimately accountable organization or human identity. Online reputation has now become an asset that organizations and individuals have a vested interest in preserving. It creates an incentive for honest and trustworthy behavior, which ultimately contributes to a safer and more reliable digital environment for everyone.

Reputation system for online accountability 

Consider what an online communication user experience could be like with an integrated reputation system. In this solution, a message sender could declare their accountability by binding their message to their account in the reputation system in the form of a cryptographic reputation tag. Conversely, the receiver uses the tag to verify the sender’s reputation and can use it to report the sender if the message is inappropriate, reducing the sender’s reputation. It is the sender’s responsibility to judge whether the receiver will perceive the message as inappropriate. 

Messages with an attached reputation tag are called reputed messages, whereas those without an associated reputation are called generic messages. Reputed messages would typically make the most sense in one-to-one communication that the sender intends for a particular recipient, or one-to-many communication to a few recipients. For example, a proposal to discuss a business deal, a wedding invitation email, a payment reminder SMS from a company’s billing department, or a work email discussing a joint project might be sent as reputed messages. Generic messages would typically not be intended for a particular receiver. For example, emails sent to a mailing list (many receivers) or non-personalized advertisements (large scale) should be sent as generic. 

The different components and workflows of our accountability mechanism are depicted, at a high level, in Figure 1.

system diagram
Figure 1: An accountability mechanism design, showing both the account creation and message sending/reporting workflows.

Taking a concrete example, think of a situation where you receive an email from your bank asking you to verify the security settings for your account. You know that phishing emails often target such scenarios, so your first reaction is to ignore the message. However, in this case your email client has noted the valid reputation tag and automatically moved the email to a reputed messages folder. It shows the sender’s reputation, high, next to the message. Instead of deleting the unsolicited and slightly suspicious email, you decide to check whether the link in the email truly leads you to your bank’s website. You are now convinced this is a legitimate message and proceed with the recommendations to review your security settings. 

As another example, suppose you work in your company’s billing department. You find something wrong with a customer’s billing information and decide to send them an email to get more information. Since this is an important matter, you hope to maximize the chance of them seeing your message by attaching the billing department’s reputation tag to it. The customer sees the email go in the reputed messages folder, notices the sender’s high reputation, and responds to it with appropriate urgency.

As a third example, imagine that you receive an unsolicited phone call from someone who claims to be your distant relative and wants to discuss a family reunion they are organizing. They ask you questions about your family, making you slightly uneasy. Right before calling you, they sent you a reputation tag via SMS encoding their reputation and the context of their call. You verify that the tag is valid, but that their reputation is medium. You decide to end the call and report them using the tag they shared, as you felt that their call asking for such sensitive information was inappropriate. 

These examples highlight that this single system can be used across many different modes of communication, from emails to social media messages to phone calls, fostering trust and safety across the entire landscape of direct communication methods in use today.

Microsoft Research Podcast

AI Frontiers: Models and Systems with Ece Kamar

Ece Kamar explores short-term mitigation techniques to make these models viable components of the AI systems that give them purpose and shares the long-term research questions that will help maximize their value. 


Call to action

In this blog post we have attempted to outline a solution to an already existing problem that is exacerbated by modern AI. Capturing the core of this problem is not easy, and many of the previously proposed solutions have unintended consequences that make them unworkable. For example, we explained why approaches that attempt to limit the use of AI are unlikely to succeed. 

The solutions are not easy either. The messaging ecosystem is vastly complex and any solution requiring fundamental changes to that are unlikely to be acceptable. Usability is a key concern as well: if the system is only designed to communicate risk, we may want to avoid inadvertently communicating safety, much like the presence of padlock symbols as a sign of HTTPS have caused confusion and underestimation of risk for web browser users (opens in new tab)

Is there a comprehensive identity framework that would connect real-world identities to digital identities? This connection to a unique real-world identity is crucial, as otherwise anyone could simply create as many distinct reputation accounts as they need for any nefarious purpose.

For organizations, the situation is easier, because countries and states tend to hold public records that establish their existence and “identity.” For individuals, platforms like Reddit, TripAdvisor, and Stack Overflow have built reputation systems for their internal use, but without a foundational layer that confirms unique human identities these cannot be used to solve our problem, just as Facebook’s “real name” policy and X Premium (formerly Twitter Blue) have been insufficient to prevent the creation and use of fake accounts. Still, this is not an impossible problem to solve: LinkedIn is already partnering with CLEAR (opens in new tab) to bind government ID verification to a verification marker in user profiles, and with Microsoft Entra Verified ID (opens in new tab) to verify employment status. Worldcoin (opens in new tab) is building a cryptocurrency with each wallet being linked to a unique real-world person through biometrics, and Apple recently announced Optic ID (opens in new tab) for biometric authentication through their Vision Pro headset.

Whenever we talk about identities—especially real-world identities—we need to talk about privacy. People use different digital identities and communication methods in different communities, and these identities need to be kept separate. Trusting a reputation system with such sensitive information requires careful consideration. Our preliminary research suggests that techniques from modern cryptography can be used to provide strong security and privacy guarantees so that the reputation system learns or reveals nothing unnecessary and cannot be used in unintended ways. 

What about the governance of the reputation system? In an extreme case, a single centralized party hosts the system while providing cryptographic transparency guarantees of correct operation. In another extreme, we should explore whether a purely decentralized implementation can be feasible. There are also options between these two extremes; for example, multiple smaller reputation systems hosted by different companies and organizations. 

These open questions present an opportunity and a responsibility for the research community. At Microsoft Research, we are diligently working on aspects of this problem in partnership with our research on privacy-preserving verifiable information and identity, secure hardware, transparency systems, and media provenance. We invite the rest of the research community to join in by either following the path we outlined here or suggesting better alternatives. This is the start of a broad exploration that calls for a profound commitment and contribution from all of us.

The post Rethinking trust in direct messages in the AI era appeared first on Microsoft Research.

Read More

AI Frontiers: AI in India and beyond with Sriram Rajamani

AI Frontiers: AI in India and beyond with Sriram Rajamani

AI Frontiers with Sriram Rajamani; black and white photo of Sriram Rajamani, Managing Director of Microsoft Research India, next to the Microsoft Research Podcast

Episode 146 | August 31, 2023

Powerful large-scale AI models like GPT-4 are showing dramatic improvements in reasoning, problem-solving, and language capabilities. This marks a phase change for artificial intelligence—and a signal of accelerating progress to come. 

In this Microsoft Research Podcast series, AI scientist and engineer Ashley Llorens hosts conversations with his collaborators and colleagues about what these models—and the models that will come next—mean for our approach to creating, understanding, and deploying AI, its applications in areas such as healthcare and education, and its potential to benefit humanity.

This episode features Sriram Rajamani, Distinguished Scientist and Managing Director of Microsoft Research India. Rajamani talks about how the lab’s work is being influenced by today’s rapidly advancing AI. One example? The development of a conversational agent in India capable of providing information about governmental agricultural programs in farmers’ natural language, particularly significant in a country with more than 30 languages, including 22 government-recognized languages. It’s an application Microsoft CEO Satya Nadella described as the “mic drop moment” of his trip to the lab early this year.

Transcript

[MUSIC PLAYS]

ASHLEY LLORENS: I’m Ashley Llorens with Microsoft Research. I’ve spent the last 20 years working in AI and machine learning, but I’ve never felt more fortunate to work in the field than at this moment. The development of increasingly powerful large-scale AI models like GPT-4 is accelerating the advancement of AI. These models and the systems they power are exhibiting surprising new abilities like reasoning, problem-solving, and translation across languages and domains. In this podcast series, I’m sharing conversations with fellow researchers about the latest developments in large AI models, the work we’re doing to understand their capabilities and limitations, and ultimately how innovations like these can have the greatest benefit for humanity. Welcome to AI Frontiers.

Today, I’ll speak with Sriram Rajamani, Managing Director of Microsoft Research India. For nearly 20 years, this lab has focused on interdisciplinary research, blending theory and practice and computer science with social science. Our researchers in India have made many contributions to advance AI in areas like causal reasoning, but the latest wave of powerful AI models has made a profound impact on all the lab’s work, including their approach to creating technologies for underserved communities.


[MUSIC FADES]

All right, so, Sriram, let’s dive right in. I think it’s fairly obvious for me to say at this point that ChatGPT—and generative AI more broadly—is a worldwide phenomenon. But what’s so striking to me about this is the way that so many people around the world can pick up the technology and use it in their context, in their own way. I was on a panel discussion a few weeks ago where I saw a comedian discover in real time that GPT-4 could write jokes that are actually funny. And shortly after that, I spoke to a student who was using ChatGPT to write an application to obtain a grazing permit for cattle. You know, the work of your lab is situated in its own unique societal context. So, what I really want to know and start with here today is, like, what’s the buzz been like for you in your part of the world around this new wave of AI?

SRIRAM RAJAMANI: Yeah. First of all, Ashley, you know, thank you for having this conversation with me. You’re absolutely right that our lab is situated in a very unique context on how this technology is going to play out in, you know, this part of the world, certainly. And you might remember, Ashley, a sort of a mic drop moment that happened for Satya [Nadella] when he visited India earlier this year, in January. So one of our researchers, Pratyush Kumar—he’s also co-founder of our partner organization called AI4Bhārat—he works also with the government on a project called Bhashini, which the government endeavors to bring conversational AI to the many Indian languages that are spoken in India. And what Pratyush did was he connected some of the AI4Bhārat translation models, language translation models, together with one of the GPT models to build a bot for a farmer to engage and ask questions about the government’s agricultural programs so the farmer could speak in their own language—you know, it could be Hindi—and what the AI4Bhārat models would do is to convert the Hindi speech into text and then translate it into English. And then he taught, you know, either fine-tuned or integrated with augmented generation … I don’t … I’m not … I don’t quite remember which one … it was one of those … where he made a GPT model customized to understand the agricultural program of the government. And he chained it together with this speech recognition and translation model. And the farmer could just now talk to the system, the AI system, in Hindi and ask, you know, are they eligible for their benefits and many details. And the, and the model had a sensible conversation with him, and Satya was just really amazed by that, and he calls … he called that as the mic drop moment of his trip in India, which I think is indicative of the speed at which this disruption is impacting very positively the various parts of the world, including the Indian subcontinent.

LLORENS: You referenced the many Indian languages written and spoken. Can you just bring, bring that to life for us? How many, how many languages are we talking about?

RAJAMANI: So, I think there are at least, you know, 30 or 40, you know, main, mainstream languages. I mean, the government recognizes 22. We call them as IN22. But I would think that there are about 30-plus languages that are spoken very, very broadly, each of them with, you know, several tens of millions, hundreds of millions of speakers. And then there is a long tail of maybe a hundred more languages which are spoken by people with … in, in smaller population counts. The real … they’re also very low-resource languages like Gondi and Idu Mishmi, which are just spoken by maybe just only a million speakers or even under a million speakers who probably … those languages probably don’t have enough data resources. So, India is an amazing testbed because of this huge diversity and distribution of languages in terms of the number of speakers, the amount of available data, and, and many of these tail languages have unique, you know, sociocultural nuances. So I think in that sense, there’s a really good testbed for, you know, how conversational AI can inclusively impact the entire world.

LLORENS: And, and what’s the … you mentioned tail languages. And so maybe we mean they’re low-resource languages like you also mentioned. What’s the gap like between what languages AI is accessible in today versus the full extent of all those languages that you just described, even just for, you know, for the Indian subcontinent? 

RAJAMANI: So what is … what we’re seeing is that with IN22, the top languages, if you look at successive versions of the GPT models, for example, the performance is definitely improving. So if you just go from, you know, GPT-2 to GPT-3 to 3.5 to 4, right, you can sort of see that these models are increasingly getting capable. But still there is a gap between what these models are able to do and what custom models are able to do, particularly if you go towards languages in which there’s not enough training data. So, so people in our lab, you know, are doing very systematic work in this area. There is a benchmarking work that my colleagues are doing called MEGA, where there is systematic benchmark being done on various tasks on a matrix that consists of, you know, tasks on one axis and languages on another axis to just systematically, empirically study, you know, what these models are able to do. And also, we are able to build models to predict how much more data is needed in each of these languages in order for the performance to be comparable to, say, languages like English. What is the … what is the gap, and how much data is needed? The other thing is that it turns out that these models, they, they learn also from related languages. So if you want to improve the performance of a language, it turns out there are other languages in the world and in India that have similar characteristics, you know, syntactic and semantic characteristics, to the language that you’re thinking about. So we can also sort of recommend, you know, what distribution of data we should collect so that all the languages improve. So that’s the kind of work that we’re doing.

LLORENS: Yeah, it’s one of the most fascinating parts of all of this—how diversity in the training dataset improves, you know, across the board, like even the addition of code, for example, in addition to language, and now we’re even seeing even other modalities. And, you know, the, the wave of AI and the unprecedented capabilities we’re seeing has significant implications for just about all of computing research. In fact, those of us in and around the field are undergoing now a process that I call, you know, reimagining computing research. And, you know, that’s a somewhat artful way to put it. But beyond the technical journey, there’s an emotional journey happening across the research community and many other communities, as well. So what has that journey been like for you and the folks at the India lab?

RAJAMANI: Yeah, that’s a good question, Ashley. You know, our work in the lab spans four areas. You know, we do work in theory and algorithms. We do work in AI and machine learning. We do systems work, and we also have an area called “Technology and Empowerment.” It’s about making sure that technology benefits people. And so far, our conversation has been about the last area. But all these four areas have been affected in a big way using this disruption. Maybe, maybe I’ll just say a few more things about the empowerment area first and then move on to the other ones. If you look at our work in the empowerment area, Ashley, right, this lab has had a track record of doing work that makes technology inclusive not just from an academic perspective, but by also deploying the work via spun-off startups, many startups, that have taken projects in the lab and scaled them to the community. Examples are Digital Green, which is an agricultural extension; 99DOTS, which is a tuberculosis medication adherence system. Karya is a, is a platform for dignified digital labor to enable underprivileged users, rural users, to contribute data and get paid for it. You know, HAMS is a system that we have built to improve road safety. You know, we’ve built a system called BlendNet that enables rural connectivity. And almost all of these, we have spun them off into startups that are … that have been funded by, you know, venture capitalists, impact investors, and we have a vibrant community of these partners that are taking the work from the lab and deploying them in the community. So the second thing that is actually happening in this area is that, as you may have heard, India is playing a pivotal role in digital public infrastructure. Advances like the Aadhaar biometric authentication system; UPI, which is a payment systemthey are pervasively deployed in India, and they reach, you know, several hundreds of millions of people. And in the case of Aadhaar, more than a billion people and so on. And the world is taking note. India is now head of the G20, and many countries now want to be inspired by India and build such a digital public infrastructure in their own countries, right. And so, so, so what you saw is the mic drop moment, right? That … it actually has been coming for a long time. There has been a lot of groundwork that has been laid by our lab, by our partners, you know, such as AI4Bhārat, the people that work on digital public goods to get the technical infrastructure and our know-how to a stage where we can really build technology that benefits people, right. So, so going forward, in addition to these two major advancements, which is the building of the partner and alumni ecosystem, the digital public good infrastructure, I think AI is going to be a third and extremely important pillar that is going to enable citizen-scale digital services to reach people who may only have spoken literacy and who might speak in their own native languages and the public services can be accessible to them. 

LLORENS: So you mentioned AI4Bhārat, and I’d love for you to say a bit more about that organization and how researchers are coming together with collaborators across sectors to make some of these technology ideas real.

RAJAMANI: Yeah. So AI4Bhārat is a center in IIT Madras, which is an academic institution. It has multiple stakeholders, not just Microsoft Research, but our search technology center in India also collaborates with them. Nandan Nilekani is a prominent technologist and philanthropist. He’s behind a lot of India’s digital public infrastructure. He also, you know, funds that center significantly through his philanthropic efforts. And there are a lot of academics that have come together. And what the center does is data collection. I talked about the diversity of, you know, Indian languages. They collect various kinds of data. They also look at various applications. Like in the judicial system, in the Indian judicial system, they are thinking about, you know, how to transcribe, you know, judgments, enabling various kinds of technological applications in that context, and really actually thinking about how these kinds of AI advances can help right on top of digital public goods. So that’s actually the context in which they are working on. 

LLORENS: Digital public goods. Can you, can you describe that? What, what do we mean in this context by digital public good?

RAJAMANI: So what we mean is if you look at Indian digital public infrastructure, right, that is, as I mentioned, that is Aadhaar, which is the identity system that is now enrolled more than 1.3 billion Indians. There is actually a payment infrastructure called UPI. There are new things that are coming up, like something that’s, that’s called Beckn. There’s something called ONDC that is poised to revolutionize how e-commerce is done. So these are all, you know, sort of protocols that through private-public partnership, right, government together with think tanks have developed, that are now deployed in a big way in India. And they are now pervasively impacting education, health, and agriculture. And every area of public life is now being impacted by these digital public infrastructures. And there is a huge potential for AI and AI-enabled systems to ride on top of this digital public infrastructure to really reach people. 

LLORENS: You know, you talked about some of the, you know, the infrastructure considerations, and so what are the challenges in bringing, you know, digital technologies to, you know, to, to the Indian context? And, and you mentioned the G20 and other countries that are following the patterns. What are, what are some of the common challenges there?

RAJAMANI: So, I mean, there are many, many challenges. One of them is lack of access. You know, though India has made huge strides in lifting people out of poverty, people out there don’t have the same access to technology that you and I have. Another challenge is awareness. People just don’t know, you know, how technology can help them, right. You know, people hearing this podcast know about, you know, LinkedIn to get jobs. They know about, you know, Netflix or other streaming services to get entertainment. But there are many people out there that don’t even know that these things exist, right. So awareness is another issue. Affordability is another issue. So … many of the projects that I mentioned, what they do is actually they start not with the technology; they start with the users and their context and this situation, and what they’re trying to do and then map back. And technology is just really one of the pieces that these systems, that all of these systems that I mentioned, right … technology is just only one component. There’s a sociotechnical piece that deals with exactly these kinds of access and awareness and these kinds of issues. 

LLORENS: And we’re, we’re kind of taking a walk right now through the work of the lab. And there are some other areas that you, you want to get into, but I want to come back to this … maybe this is a good segue into the emotional journey part of the question I asked a few minutes ago. As you get into some of the, you know, the deep technical work of the lab, what were some of the first impressions of the new technologies, and what were, what were some of the first things that, you know, you and your colleagues there and our colleagues, you know, felt, you know, in observing these new capabilities?

RAJAMANI: So I, I think Peter [Lee] mentioned this very eloquently as stages of grief. And me and my colleagues, I think, went through the same thing. I mean, the … there was … we went from, you know, disbelief, saying, “Oh, wow, this is just amazing. I can’t believe this is happening” to sort of understanding what this technology can do and, over time, understanding what its limitations are and what the opportunities are as a scientist and technologist and engineering organization to really push this forward and make use of it. So that’s, I think, the stages that we went through. Maybe I can be a little bit more specific. As I mentioned, the three other areas we work on are theory in algorithms, in machine learning, and in systems. And I can sort of see … say how my colleagues are evolving, you know, their own technical and research agendas in the, in the light of the disruption. If you take our work in theory, this lab has had a track record of, you know, cracking longstanding open problems. For example, problems like the Kadison-Singer conjecture that was open for many years, many decades, was actually solved by people from the lab. Our lab has incredible experts in arithmetic and circuit complexity. They came so close to resolving the VP versus VNP conjecture, which is the arithmetic analog of the P versus NP problem. So we have incredible people working on, working on theoretical computer science, and a lot of them are now shifting their attention to understanding these large language models, right. Instead of understanding just arithmetic circuits, you know, people like Neeraj Kayal and Ankit Garg are now thinking about mathematically what does it take to understand transformers, how do we understand … how might we evolve these models or training data so that these models improve even further in performance in their capabilities and so on. So that’s actually a journey that the theory people are going through, you know, bringing their brainpower to bear on understanding these models foundationally. Because as you know, currently our understanding of these foundation models is largely empirical. We don’t have a deep scientific understanding of them. So that’s the opportunity that the, that the theoreticians see in this space. If you look at our machine learning work, you know, that actually is going through a huge disruption. I remember now one of the things that we do in this lab is work on causal ML … Amit Sharma, together with Emre Kiciman and other colleagues working on causal machine learning. And I heard a very wonderful podcast that you hosted them some time ago. Maybe you can say a little bit about what, what you heard from them, and then I can pick up back and then connect that with the rest of the lab. 

LLORENS: Sure. Well, it’s … you know, I think the, the common knowledge … there’s, there’s so many, there’s so many things about machine learning over the last few decades that have become kind of common knowledge and conventional wisdom. And one of those things is that, you know, correlation is not causation and that, you know, you know, learned models don’t, you know, generally don’t do causal reasoning. And so we, you know, we’ve had very specialized tools created to do the kind of causal reasoning that Amit and Emre do. And it was interesting. I asked them some of the same questions I’m asking you now, you know, about the journey and the initial skepticism. But it has been really interesting to see how they’re moving forward. They recently published a position paper on arXiv where they conducted some pretty compelling experiments, in some cases, showing something like, you know, causal reasoning, you know, being, being exhibited, or at least I’ll say convincing performance on causal reasoning tasks. 

RAJAMANI: Yeah, absolutely.

LLORENS: Yeah, go ahead.

RAJAMANI: Yeah, yeah, yeah, absolutely. So, so, so, you know, I would say that their journey was that initially they realized that … of course, they build specialized causal reasoning tools like DoWhy, which they’ve been building for many years. And one of the things they realized was that, “Oh, some of the things that DoWhy can do with sophisticated causal reasoning these large language models were just able to do out of the box.” And that was sort of stunning for them, right. And so the question then becomes, you know, does specific vertical research in causal reasoning is even needed, right. So that’s actually the shock and the awe and the emotional journey that these people went through. But actually, after the initial shock faded, they realized that there is actually [a] “better together” story that is emerging in the sense that, you know, once you understand the details, what they realized was that natural language contains a lot of causal information. Like if you just look at the literature, the literature has many things like, you know, A causes B and if there is, if there is, you know, hot weather, then ice cream sales go up. You know, this information is present in the literature. So if you look at tools like DoWhy, what they do is that in order to provide causal machine learning, they need assumptions from the user on what the causal model is. They need assumptions about what the causal graph is, what is the user’s assumptions about which variables depend on which variables, right? And then … and, and, and what they’ve realized is that models like GPT-4 can now provide this information. Previously, only humans were able to provide this information. And … but in addition to that, right, tools like DoWhy are still needed to confirm or refute these assumptions, statistically, using data. So this division of labor between getting assumptions from either a human or from a large language model and then using the mathematics of DoWhy to confirm or refute the assumptions now is emerging as a real advance in the way we do causal reasoning, right? So I think that’s actually what I heard in your podcast, and that’s indicative of actually what the rest of my colleagues are going through. You know, moving from first thinking about, “Oh, GPT-4 is like a threat, you know, in the sense that it really obviates my research area” to understand, “Oh, no, no. It’s really a friend. It, it really helps me do, you know, some of the things that required primarily human intervention. And if I combine GPT or these large language models together with, you know, domain specific research, we can actually go after bigger problems that we didn’t even dare going after before.” 

LLORENS: Mmm. Let me, let me ask you … I’m going to, I’m going to pivot here in a moment, but did you … have you covered, you know, the areas of research in the lab that you wanted to walk through?

RAJAMANI: Yeah, yeah, there’s, there’s more. You know, thank you for reminding me. Even in the machine learning area, there is another work direction that we have called extreme classification, which is about building very, very … classifiers with a large number of labels, you know, hundreds of millions and billions of labels. And, you know, these people are also benefiting from large language encoders. You know, they have come up with clever ways of taking these language encoders that are built using self-supervised learning together with supervised signals from things like, you know, clicks and logs from search engines and so on to improve performance of classifiers. Another work that we’ve been doing is called DiskANN, or approximate nearest neighbor search. As you know, Ashley, in this era of deep learning, retrieval works by converting everything in the world, you know, be it a document, be it an image, you know, be it an audio or video file, everything into an embedding, and relevance … relevant retrieval is done by nearest neighbor search in a geometric space. And our lab has been doing … I mean, we have probably the most scalable vector index that has been built. And, and, and these people are positively impacted by these large language models because, you know, as you know, retrieval augmented generation is one of the most common design patterns in making these large language models work for applications. And so their work is becoming increasingly relevant, and they are being placed huge demands on, you know, pushing the scale and the functionality of the nearest neighbor retrieval API to do things like, oh, can I actually add predicates, can I add streaming queries, and so on. So they are just getting stretched with more demand, you know, for their work. You know, if you look at our systems work, which is the last area that I want to cover, you know, we have, we have been doing work on using GPUs and managing GPU resources for training as well as inference. And this area is also going through a lot of disruption. And prior to these large language models, these people were looking at relatively smaller models, you know, maybe not, you know, hundreds of billions to trillions of parameters. But, but, you know, maybe hundreds of millions and so on. And they invented several techniques to share a GPU cluster among training jobs. So the disruption that they had was all these models are so large that nobody is actually sharing clusters for them. But it turned out that some of the techniques that they invented to deal with, you know, migration of jobs and so on are now used for failure recovery in very, very large models. So it turns out that, you know, at the beginning it seems like, “Oh, my work is not relevant anymore,” but once you get into the details, you find that there are actually still many important problems. And the insights you have from solving problems for smaller models can now carry over to the larger ones. And one other area I would say is the area of, you know, programming. You know, I myself work in this area. We have been doing … combining machine learning together with program analysis to build a new generation of programing tools. And the disruption that I personally faced was that the custom models that I was building were no longer relevant; they’re, they’re not even needed. So that was a disruption. But actually, what me and my colleagues went through was that, “OK, that is true, but we can now go after problems that we didn’t dare to go before.” Like, for example, you know, we can now see that, you know, copilot and so on let you give recommendations in the context of the particular file that you are editing. But can we now edit an entire repository which might contain, you know, millions of files with hundreds of millions of code? Can I just say, let’s take, for example, the whole of the Xbox code base or the Windows code base, and in the whole code base, I want to do this refactoring, or I want to, you know, migrate this package from … migrate this code base from using now this serialization package to that serialization package. Can we just do that, right? I think we wouldn’t even dare going after such a problem two years ago. But now with large language models, we are thinking, can we do that? And large language models cannot do this right now because, you know, whatever context size you have, you can’t have 100-million-line code as a context to a large language model. And so this requires, you know, combining program analysis with these techniques. That’s as an example. And actually, furthermore, there are, you know, many things that we are doing that are not quite affected by large language models. You know, for example, Ashley, you know about the HyWay project, where we’re thinking about technology to make hybrid work work better. And, you know, we are doing work on using GPUs and accelerators for, you know, database systems and so on. And we do networking work. We do a low-earth orbit satellite work for connectivity and so on. And those we are doubling down, you know, though, they have nothing to do with large language models because those are problems that are important. So, I think, you know, to summarize, I would say that, you know, most of us have gone through a journey from, you know, shock and awe to sort of somewhat of an insecurity, saying is my work even relevant, to sort of understanding, oh, these things are really aides for us. These are not threats for us. These are really aides, and we can use them to solve problems that we didn’t even dream of before. That’s the journey I think my colleagues have gone through.

LLORENS: I want to, I want to step into two of the concepts that you just laid out, maybe just to get into some of the intuitions as to what problem is being solved and how generative AI is sort of changing the way that those, those problems are solved. So the first one is extreme classification. I think, you know, a flagship use of generative AI and foundation models is, is Bing chat. And so I think this idea of, of internet search as a, as a, you know, as a, a home for, for these new technologies is, is in the popular imagination now. And I know that extreme classification seeks to solve some challenges related to search and information retrieval. But what is the challenge problem there? What, you know … how is extreme classification addressing that, and how is that, you know, being done differently now? 

RAJAMANI: So as I mentioned, where my colleagues have already made a lot of progress is in combining language encoders with extreme classifiers to do retrieval. So there are these models called NLR. Like, for example, there’s a tooling NLR model, which is a large language model which does representation, right. It actually represents, you know, keywords, keyword phrases, documents, and so on in the encodings, you know, based on, you know, self-supervised learning. But it is a very important problem to combine the knowledge that these large language models have, you know, from understanding a text. We have to combine that with supervised signals that we have from click logs. Because we have search engine click logs, we know, you know, for example, when somebody searches for this information and we show these results, what users click on. That’s supervised signals, and we have that in huge amounts. And what our researchers have done is they have figured out how to combine these encoders together with the supervised signals from click logs in order to improve both the quality and cost of retrieval, right. And, Ashley, as you said, retrieval is an extremely important part of experiences like Bing chat and retrieval augmented generation is what prevents hallucination and grounds these large language models with appropriate information retrieved and presented so that the, the relevant results are grounded without hallucination, right. Now, the new challenge that this team is now facing is, OK, that’s so far so good as far as retrieval is concerned, right? But can we do similar things with generation, right? Can we now combine these NLG models, which are these generative models, together with supervised signals, so that even generation can actually be guided in this manner, improved in both performance, as well as accuracy. And that is an example of a challenging problem that the team is going after.

LLORENS: Now let’s do the same thing with programming, and maybe I’m going to engage you on a slightly higher level of abstraction than the deep work you’re doing. And then, we can, we can, we can get back down into the work. But one of the things … one of, one of the, one of the popular ideas about these new foundation models is that you can … effectively through interacting with them, you’re sort of programming them in natural language. How does that concept sit with you as someone who, you know, is an expert in programming languages? What do you, what do you think, what do you think when someone says, you know, sort of programming the, you know, the system in natural language?

RAJAMANI: Yeah, so I, I find it fascinating and, you know, for one, you know, can we … an important topic in programming language research has been always that can we get end users or, you know, people who are nonprogrammers to program. I think that has been a longstanding open problem. And if you look at the programming language community, right, the programming language community has been able to solve it only in, in narrow domains. You know, for example, Excel has Flash Fill, where, through examples, you know, people can program Excel macros and so on. But those are not as general as these kinds of, you know, LLM-based models, right. And, and it is for the whole community, not just me, right. It was stunning when users can just describe in natural language what program they want to write and these models emit in a Python or Java or C# code. But there is a gap between that capability and having programmers just program in natural language, right. Like, you know, the obvious one is … and I can sort of say, you know, write me Python code to do this or that, and it can generate Python code, and I could run it. And if that works, then that’s a happy path. But if it doesn’t work, what am I supposed to do if I don’t know Python? What am I supposed to do, right? I still have to now break that abstraction boundary of natural language and go down into Python and debug Python. So one of the opportunities that I see is then can we build representations that are also in natural language, but that sort of describe, you know, what the application the user is trying to build and enable nonprogrammers—could be lawyers, could be accountants, could be doctors—to engage with a system purely in natural language and the system should talk back to you, saying, “Oh, so far this is what I’ve understood. This is the kind of program that I am writing,” without the user having to break that natural language abstraction boundary and going and having to go and understand Python, right? I think this is a huge opportunity in programming languages to see whether … can we build, like, for example, right, Ashley, right, I’m a programmer, and one of the things I love about programming is that I can write code. I can run it, see what it produces, and if I don’t like the results, I can go change the code and rerun it. And that’s sort of the, you know, coding, evaluating … we call it the REPL loop, right. So that’s, that’s what a programmer faces, right. Can we now provide that to natural language programmers? And since …  and I want to say, “Here’s a program I want to write,” and now I want to say, “Well, I want to run this program with this input.” And if it doesn’t work, I want to say, “Oh, this is something I don’t like. I want to change this code this way,” right. So can I now provide that kind of experience to natural language programming? I think that’s a huge opportunity if you managed to pull that off.

LLORENS: And now let’s, let’s maybe return to some of the more societally oriented, you know, topics that, that you were talking about at the top of the episode in the context of, of, of programming. Because being able to program in natural language, I think, really changes, you know, who can use the technologies, who can develop technologies, what a program … what a software development team can actually be, and who, who that, who that kind of a team can consist of. So can you paint a picture? You know, what, what, what kind of opportunities for, for, you know, software development does this open up when you can sort of program in natural languages, assuming we can make the AI compatible with your language, whatever that happens to be?  

RAJAMANI: Yeah, I think there are a lot of opportunities, and maybe I’ll, I’ll, I’ll describe a few things that we’re already doing. My, my colleagues are working on a project called VeLLM, which is now a copilot assistant for societal-scale applications. And one application they are going after is education. So, you know, India, like many other countries, has made a lot of educational resources available to teachers in government schools and so on so that if a teacher wants to make a lesson plan, you know, there is enough information available for them to search, find out many videos that their colleagues have created from different parts of the country, and put them together to create a lesson plan for their class, right. But that is a very laborious process. I mean, you have information overload when you deal with it. So my colleagues are thinking about, can we now think about, in some sense, the teacher as a programmer and have the teacher talk to the VeLLM system saying, “Hey, and here is my lesson plan. Here is what I’m trying to put together in terms of what I want to teach. And I now want the AI system to collect the relevant resources that are relevant to my lesson plan and get them in my language, the language that my students speak. You know, how do I do that,” right? And all of the things that I mentioned, right, you have to now index all of the existing information using vector indices. You have to now [use] retrieval augmented generation to get the correct thing. You have to now deal with the trunk and tail languages because this teacher might be speaking in, in, in a language that is not English, right. And, and, and, and the teacher might get a response that they don’t like, right. And how do they now … but they are not a programmer, right?  How are they going to deal with it, right? So that’s actually an example. If we, if we pull this off, right, and a teacher in rural India is able to access this information in their own language and create a lesson plan which contains the best resources throughout the country, right, we would have really achieved something.

LLORENS: Yeah, you know, it’s a, it’s a hugely compelling vision. And I’m really looking forward to seeing where you and, you know, our colleagues in Microsoft Research India Lab and MSR [Microsoft Research] more broadly, you know, take all these different directions.

[MUSIC PLAYS] So I really appreciate you spending this time with me today.

RAJAMANI: Thank you, Ashley. And I was very happy that I could share the work that my colleagues are doing here and, and bringing this to your audience. Thank you so much.

The post AI Frontiers: AI in India and beyond with Sriram Rajamani appeared first on Microsoft Research.

Read More

Building a “heavy metal quartet” of AI compilers

Building a “heavy metal quartet” of AI compilers

By MSR Editor 

Compilation is an important process in program development, in which a program called a compiler translates source code written in a programming language into machine code executable on computer hardware. As AI technology and large-scale AI models become increasingly prevalent across the digital world, their unique characteristics are posing new challenges for compilers.

As AI models have evolved from early versions like recurrent neural networks (RNN) and convolutional neural networks (CNN) to more recent iterations like Transformer, their fundamental architecture is also constantly evolving. Meanwhile, the underlying hardware accelerators, such as graphics processing units (GPUs) and neural processing units (NPUs), are iterating rapidly as well, with some designs disrupting previous architectures. Therefore, an AI compiler plays a critical role in helping new AI models run efficiently on new hardware.

In response, researchers from Microsoft Research, in collaboration with academic colleagues, conducted a series of research and released the “heavy-metal quartet” of AI compilers: Rammer, Roller, Welder, and Grinder[1]. This quartet provides systematic and innovative solutions for current mainstream AI models and hardware compilation.

The left diagram shows the unified compiler abstraction with a tile-based intermediate representation (IR) as the core. The right diagram shows the four core AI compilation technologies.
Figure 1: The four core AI compilation technologies based on unified tile abstraction

Microsoft Research Podcast

AI Frontiers: The future of causal reasoning with Emre Kiciman and Amit Sharma

Emre Kiciman and Amit Sharma discuss their paper “Causal Reasoning and Large Language Models: Opening a New Frontier for Causality” and how it examines the causal capabilities of large language models (LLMs) and their implications.


AI compilation “Rammer” improves hardware parallel utilization

Deep neural networks (DNNs) are widely adopted in image classification, natural language processing, and many other intelligence tasks. Because of their importance, many computing devices such as CPUs, GPUs, and specially designed DNN accelerators are being used to perform DNN computations. One key variable for DNN computation efficiency is scheduling, which determines the order in which computational tasks are performed on hardware. Conventional AI compilers typically treat DNN computation as a data flow graph where each node represents a DNN operator. These operators are implemented as opaque library functions and are scheduled to run on the accelerator separately. At the same time, this process also relies on another layer of schedulers, usually implemented in hardware, to take advantage of the parallelism available in operators. This two-level approach incurs significant scheduling overhead and often does not fully utilize hardware resources.

To address this issue, researchers proposed a new DNN compiler, Rammer, which can optimize the execution of DNN workloads on massive-parallel units of accelerators. Rammer imagines the scheduling space for AI compilation as a two-dimensional plane, where computational tasks are “bricks” that can be divided into different shapes and sizes. The purpose of scheduling in Rammer is to arrange these bricks tightly—as if building a wall—on the computational units of the two-dimensional plane. The arrangement should not leave any gaps, which would hurt hardware utilization and thus reduce execution speed. Rammer works like a compactor in this two-dimensional space: when a DNN program is translated into bricks, Rammer can place them on different computing units of the accelerator to compact them.

A schematic diagram illustrating Rammer’s technical framework. The input to Rammer is a data-flow graph where a node is an rOperator. Then, Rammer introduces rTask-aware DFG compiler to manage the inter and intra-operator scheduling in one place. The rTask-aware DFG compiler will generate a static execution plan for runtime execution. Rammer abstracts a hardware accelerator as a virtualized parallel device (vDevice), which includes multiple virtualized execution units (vEUs). The vDevice provides the scheduling and synchronization capabilities at the rTask level so that the rProgram can be mapped to the corresponding vEUs at compile time. The vEUs, together with the vDevice will be mapped to the hardware at runtime.
Figure 2: Rammer’s technical framework

In other words, Rammer generates an efficient static spatiotemporal schedule for DNNs ahead of time (during compilation), minimizing runtime scheduling overhead. Meanwhile, through new hardware-independent abstractions for computing tasks and hardware accelerators, Rammer exposes a larger scheduling space and provides a novel way to implement cooperative intra- and inter-operator scheduling. This allows Rammer to find more efficient schedules, thereby greatly improving hardware utilization.

Researchers evaluated Rammer on multiple devices, including NVIDIA GPUs, AMD GPUs, and Graphcore intelligence processing units (IPUs). Experiments have shown that Rammer significantly outperforms state-of-the-art compilers, such as XLA and TVM, on NVIDIA and AMD GPUs, achieving a speedup of up to 20.1 times. And compared to TensorRT, NVIDIA’s proprietary DNN inference library, Rammer achieves a speedup of up to 3.1 times.

AI compilation “Roller” improves compilation efficiency

An accelerator is equipped with parallel computing units and multiple layers of memory hierarchy. The data needs to be passed upwards layer by layer from the bottom memory layer before computation. At each layer, the data is divided into smaller bricks. Eventually, these smaller bricks are handed over to the top-level processor for computation. The challenge lies in how to partition the data and fill the memory space with large bricks, so as to better utilize available memory and improve efficiency. The current approach involves using machine learning to identify better strategies for partitioning these bricks. However, this typically requires thousands of search steps, each of which is evaluated on the accelerator, in order to find a satisfactory solution. As a result, the process can take days or even weeks to compile a full AI model.

Given the computational logic and the specification of each memory layer, which present a holistic view on the software and hardware information, it is possible to formulate the best strategy for partitioning the bricks, as well as the best brick sizes. This enables faster compilation with good computation efficiency. And it is the key idea behind Roller. Like a road roller, the system lays down high-dimensional tensor data onto two-dimensional memory like tiling a floor, finding the optimal tile sizes given the memory characteristics. At the same time, it encapsulates the tensor shape that aligns with the hardware characteristics of the underlying accelerator, achieving efficient compilation by limiting the choices for shapes.

A schematic diagram illustrating Roller’s technical framework. Roller takes an operator described as a tensor expression. Roller extracts the tensor shapes from the tensor expression and leverage hardware specifications to construct rTiles. Based on rTiles, Roller proposes a scale-up-then-scale-out recursive construction algorithm to generate efficient tensor programs (named rProgram) that describes the data processing pipeline. When generating rProgram, the construction algorithm identifies good rTile configurations by evaluating the performance of a constructed rProgram through a micro-performance model. It is built on top a device described through a hardware abstraction layer exposing only rTile-related interfaces: Load, Compute, and Store. The constructed rProgram is finally realized through a code generator to emit the final kernel code corresponding to the specific device.
Figure 3: Roller’s technical framework

Evaluations on six mainstream DNN models and 119 popular DNN operators demonstrated that Roller can generate highly optimized kernels in seconds, especially for large and expensive custom operators. Roller achieves a three-orders-of-magnitude improvement in compilation time compared to existing compilers. The performance of the kernels generated by Roller is comparable to that of state-of-the-art tensor compilers, including DNN libraries, with some operators performing even better. Roller has also been used in customizing DNN kernels internally, which has demonstrated its real improvement in development agility.

AI compilation “Welder” optimizes memory access and improves computing efficiency

With the growing demand for processing higher fidelity data and the use of faster computing cores in newer hardware accelerators, modern DNN models are becoming increasingly memory intensive. A disparity between underutilized computing cores and saturated memory bandwidth has been observed in various popular DNN models.

For example, profiling on a state-of-the-art DNN benchmark shows that the memory bandwidth utilization can be as high as 96.7% while the average utilization of computing cores is only 51.6%. Even more seriously, the continuous evolution of hardware and DNN models continues to increase this gap. Modern AI models tend to process high-fidelity data, such as larger images, longer sentences, and higher-resolution graphics. Such data demands higher memory bandwidth during computation. Additionally, the introduction of more efficient specialized computing cores (such as NVIDIA Tensor Cores or AMD Matrix Cores) further increases memory pressure.

To address this issue, the researchers proposed the Welder deep learning compiler, which holistically optimizes the memory access efficiency of the end-to-end DNN model. Represented as a data flow graph, the end-to-end DNN computation involves multiple stages, where the input data is divided into blocks that flow through different operators. These blocks are transferred to processor cores for computation and then transferred back to memory. This results in significant overhead due to data movement across memory layers. Since it includes multiple stages, the entire process can be envisioned as a scenario where “workers” are moving bricks upwards layer by layer. The first worker takes the bricks up, processes them, and then puts them back in their original location. The second worker takes them up again, sculpts them, and then once again puts them back. The process continues with the third worker, the fourth worker, and so on, repeatedly moving the bricks. However, this leads to significant overhead. Would it be possible for the first worker to finish a part of the subtask and then directly hand it over to the next worker at the top level? These tasks can then be “welded” together to achieve a pipelined operation with higher efficiency. Welder plays the role of such a welding tool. By connecting (welding) different operators, data blocks are processed in the manner of an assembly line, greatly reducing memory access traffic at lower-level memory layers. With AI models imposing increasingly high requirements for memory efficiency in recent years, Welder helps to significantly improve computational efficiency.

A schematic diagram illustrating Welder’s technical framework. Welder takes a full DNN model as input and converts it into a data-flow graph of tile-based computing tasks, which is called tile-graph. Then, a two-step scheduling algorithm, i.e., graph connecting and sub-graph scheduling, is proposed to recursively decide an efficient tile-graph execution plan for multiple memory layers, known as a hierarchical tile-graph. Finally, this plan is then mapped to an executable code for a specific hardware accelerator using four abstracted computing interfaces defined in the hardware layer.
Figure 4: Welder’s technical framework

Evaluations on 10 mainstream DNN models, (including classic and the latest AI model structures for various tasks, such as vision, natural language processing, 3D graphics, etc.), demonstrated that Welder significantly exceeds the performance of existing mainstream frameworks and compilers on both NVIDIA and AMD GPUs. For example, it outperforms PyTorch, ONNXRuntime, and Ansor by up to 21.4 times, 8.7 times, and 2.8 times, respectively. Welder’s automatic optimization surpasses even TensorRT and Faster Transformer (a hand-crafted library), achieving speedups of up to 3.0 times and 1.7 times, respectively. Furthermore, when running these models on hardware with faster computing cores such as TensorCore, performance is improved even more, underscoring the significance of memory optimization for future AI accelerators. 

AI compilation “Grinder” allows efficient control flow execution on accelerators

In AI computation, the movement of data blocks sometimes requires more complex control logic, i.e., control flow code. For example, a program could iteratively traverse each word in a sentence or dynamically determine which part of a program to execute based on input. Currently, most AI compilers focus on addressing data flow execution efficiency and do not provide efficient support for control flow. As a result, models with more complex control flow cannot effectively utilize accelerator performance. The researchers realized that control flow and data flow can be segmented and reorganized in order to execute more efficiently. Their solution is Grinder, which acts like a portable grinding and cutting machine. After cutting the data flow into parallel computing blocks of different sizes, it then integrates (grinds) control flow into data flow, so that control flow can also be executed efficiently on the accelerator.

A schematic diagram illustrating Grinder’s technical framework. The example loop structure is scheduled as a uProgram mapped on the 3-level accelerator. The uProgram consists of 4 loop-uTasks for 4 L1-Units resepectively and each loop-uTask is mapped to a L1-Unit for execution. Both the data flow operators and the loop are scheduled into the loop-uTasks.
Figure 5: Grinder’s technical framework

Grinder can jointly optimize the execution of control flow and data flow on hardware accelerators and unify the representation of AI models, including both control flow and data flow, through uTask, a new abstraction. This allows Grinder to expose the overall scheduling space for rescheduling control flow to lower levels of hardware parallelism. Grinder uses a heuristic strategy to find an effective scheduling scheme and can automatically move control flow into device kernels, thereby achieving optimizations across control flow boundaries. Experiments have shown that Grinder can achieve up to an 8.2x speedup on control flow-intensive DNN models, making it the fastest among DNN frameworks and compilers for control flow. 

These four AI compilers, based on a common compiler abstraction and unified intermediate representation (IR), solve multiple fundamental problems in current AI compilers, including parallelism, compilation efficiency, memory, and control flow. Together they constitute a comprehensive set of solutions for compilation. and have played an important role in the customization and optimization of new AI models within Microsoft Research.

Jilong Xue, Principal Researcher at MSR Asia, summed up the project this way:

“On one hand, AI compilers must perform extreme optimizations like operator fusion and kernel specialization tailored for hardware resources. On the other hand, they must also provide systematic compilation support for new, large-scale hardware architectures, such as AI chips featuring on-chip network interconnection (NoC) or hybrid memory architectures, and even guiding hardware design using white-box compilation technologies. The AI compilers we developed have demonstrated a substantial improvement in AI compilation efficiency, thereby facilitating the training and deployment of AI models. At the same time, the evolution of large-scale models also presents opportunities for the next generation AI compiler. In the future, these large-scale models themselves may inherently assist in achieving optimization and compilation.”

The following researchers have contributed to this project:

(In alphabetical order) Wei Cui, Yuxiao Guo, Wenxiang Hu, Lingxiao Ma, Youshan Miao, Ziming Miao, Yuqing Xia, Jilong Xue, Fan Yang, Mao Yang, Lidong Zhou


[1] Grinder is the research project name. However, this system is referred to as Cocktailer in the paper.

The post Building a “heavy metal quartet” of AI compilers appeared first on Microsoft Research.

Read More

Research Focus: Week of August 28, 2023

Research Focus: Week of August 28, 2023

Microsoft Research Focus 23 | Week of August 28, 2023

Welcome to Research Focus, a series of blog posts that highlights notable publications, events, code/datasets, new hires and other milestones from across the research community at Microsoft.

NEW RESEARCH

An illusion of predictability in scientific results: Even experts confuse inferential uncertainty and outcome variability

In many fields, practitioners focus on inference (precisely estimating an unknown quantity, such as a population average) instead of prediction (forecasting individual outcomes). In a newly published article, researchers from Microsoft demonstrate that this focus on inference over prediction can mislead readers into thinking that the results of scientific studies are more definitive than they actually are.

Through a series of randomized experiments, the researchers demonstrate that this confusion arises for one of the most basic ways of presenting statistical findings and affects even experts whose jobs involve producing and interpreting such results, including medical professionals, data scientists, and tenure-track faculty.  In contrast, the paper shows that communicating both inferential and predictive information side by side provides a simple and effective alternative, leading to calibrated interpretations of scientific results.

This article was published in the Proceedings of the National Academy of Sciences (PNAS).

SPOTLIGHT: AI focus area

AI and Microsoft Research

Learn more about the breadth of AI research at Microsoft


NEW RESEARCH

FiGURe: Simple and Efficient Unsupervised Node Representations with Filter Augmentations

Contrastive learning is a powerful method for unsupervised graph representation learning. It is typically deployed on homophilic tasks, where task labels strongly correlate with the graph’s structure. However, these representations struggle when dealing with heterophilic tasks, where edges tend to connect nodes with different labels.

Several papers have tackled the problem of heterophily by leveraging information from both low and high frequency components. Yet these methods operate in semi-supervised settings, and the extension of these ideas in unsupervised learning still needs to be explored.

In a new paper: FiGURe: Simple and Efficient Unsupervised Node Representations with Filter Augmentations, researchers from Microsoft propose using filter banks for learning representations that can cater to both heterophilic and homophilic tasks. They address the related computational and storage burdens by sharing the encoder across these various filter views, and by learning a low-dimensional representation which is projected to high dimensions using Random Fourier Features. FiGURe achieves a gain of up to 4.4%, compared to the state-of-the-art unsupervised models, across all datasets in consideration, both homophilic and heterophilic.


AWARD

Kathleen Sullivan named to Insider’s 30 under 40 in healthcare list

Microsoft Research congratulates Kathleen Sullivan (opens in new tab) for being named to Insider’s list of 30 under 40 forging a new future in healthcare (opens in new tab). After a competitive nomination and interview, Kathleen was selected for this inspiring list of “entrepreneurs, scientists, doctors, and business leaders who are transforming the healthcare industry.”

As senior director of strategy and operations within the health and life sciences division of Microsoft Research, Sullivan helps steer the company’s investments in AI. She helped engineer a Microsoft collaboration with Nuance Technologies–a precursor to Microsoft’s acquisition of Nuance in 2021. In 2018, Sullivan helped secure Microsoft’s partnership with Adaptive Biotechnologies to map the human immune system (opens in new tab)

Read the Insider article (opens in new tab)
(subscription required)

The post Research Focus: Week of August 28, 2023 appeared first on Microsoft Research.

Read More

Using AI for tiered cloud platform operation

Using AI for tiered cloud platform operation

Tiered AIOps. Incidents not resolved by a tier get escalated to the next one. As upper tiers solve these incidents, this knowledge propagates to the previous tiers to improve their coverage with new models and labeled data.

Cloud Intelligence/AIOps blog series, part 4

In the previous posts in this series, we introduced our research vision for Cloud Intelligence/AIOps (part 1) and how advanced AI can help design, build, and manage large-scale cloud platforms effectively and efficiently; we looked at solutions that are making many aspects of cloud operations more autonomous and proactive (part 2); and we discussed an important aspect of cloud management: RL-based tuning of application configuration parameters (part 3). In this post, we focus on the broader challenges of autonomously managing the entire cloud platform. 

In an ideal world, almost all operations of a large-scale cloud platform would be autonomous, and the platform would always be at, or converging to, the operators’ desired state. However, this is not possible for a variety of reasons. Cloud applications and infrastructure are incredibly complex, and they change too much, too fast. For the foreseeable future, there will continue to be problems that are novel and/or too complex for automated solutions, no matter how intelligent, to address. These may arise due to complex cascading or unlikely simultaneous failures, unexpected interactions between components, challenging (or malicious) changes in workloads such as the rapid increase in traffic due to the COVID pandemic, or even external factors such as the need to reduce power usage in a particular region.

At the same time, rapid advances in machine learning and AI are enabling an increase in the automation of several aspects of cloud operations. Our second post in this series listed a number of these, including detection or problematic deployments, fault localization, log parsing, diagnosis of failures, prediction of capacity, and optimized container reallocation.

Spotlight: Microsoft research newsletter

Microsoft Research Newsletter

Stay connected to the research community at Microsoft.


Stages of evolution toward Tiered AIOps
Figure 1: Stages of evolution toward Tiered AIOps

To reconcile these two realities, we introduce the concept of Tiered AIOps. The idea is to separate systems and issues into tiers of different levels of automation and human intervention. This separation comes in stages (Figure 1). The first stage has only two tiers: one where AI progressively automates routine operations and can mitigate and solve simple incidents without a human in the loop, and a second tier where expert human operators manage the long tail of incidents and scenarios that the AI systems cannot handle. As the AI in the first tier becomes more powerful, the same number of experts can manage larger and more complex cloud systems. However, this is not enough.

Tiered AIOps. Incidents not resolved by a tier get escalated to the next one. As upper tiers solve these incidents, this knowledge propagates to the previous tiers to improve their coverage with new models and labeled data.
Figure 2: Tiered AIOps. Incidents not resolved by a tier get escalated to the next one. As upper tiers solve these incidents, this knowledge propagates to the previous tiers to improve their coverage with new models and labeled data.

New AI tools enable a final, even more scalable stage, where human expertise can also be separated into two tiers. In this stage, the middle tier involves situations and problems that the AI in the first level cannot handle, but which can be solved by non-expert, generalist human operators. AI in this second tier helps these operators manage the platform by lowering the level of expertise needed to respond to incidents. For example, the AI could automatically localize the source of an incident, recommend mitigation actions, and provide risk estimates and explanations to help operators reason about the best mitigating action to take. Finally, the last tier relies on expert engineers for complex and high-impact incidents that automated systems and generalists are unable to solve. In other words, we have the following tiers (Figure 2):

  • Tier 1: Fully autonomous platform operation. Automates what can be learned or predicted. Includes intelligent and proactive systems to prevent failures and resolution of incidents that follow patterns of past incidents. 
  • Tier 2: Infrastructure for non-expert operators to manage systems and incidents. Receives context from events and incidents that are not handled in the first tier. AI systems provide context, summaries, and mitigation recommendations to generalist operators. 
  • Tier 3: Infrastructure for experts to manage systems and incidents that are novel or highly complex. Receives context from events and incidents not handled in the first two tiers. Can enable experts to interact and manage a remote installation. 

There are two types of AI systems involved: first, those that enable increasing levels of automation in the first and second tiers, and; second, the AI systems (different types of co-pilots) that assist operators. It is the latter type that enables the division between the second and third tiers, and also reduces the risk of imperfect or incomplete systems in the first tier. This separation between the top two tiers is also crucial for the operation of air-gapped clouds and makes it more feasible to deploy new datacenters in locations where there might not be the same level of expert operators. 

The key idea in the Tiered AIOps concept is to simultaneously expand automation and increase the number of incidents that can be handled by the first tier, while recognizing that all three tiers are critical. The research agenda is to build systems and models to support automation and incident response in all three tiers.  

Escalating incidents. Each tier must have safeguards to (automatically or not) escalate an issue to the next tier. For example, when the first tier detects that there is insufficient data, or that the confidence (risk) in a prediction is lower (higher) than a threshold, it should escalate, with the right context, to the next tier.  

Migrating learnings. On the other hand, over time and with gained experience (which can be encoded in troubleshooting guides, new monitors, AI models, or better training data), repeated incidents and operations migrate toward the lower tiers, allowing operators to allocate costly expertise to highly complex and impactful incidents and decisions. 

Performance and power of the SmartOverclock agent, showing near peak performance at significantly less power.
Figure 3: Performance and power of the SmartOverclock agent, showing near peak performance at significantly less power.

We will now discuss some work on extending the first tier with on-node learning, how to use new AI systems (large language models or simply LLMs) to assist operators in mitigating incidents and to move toward enabling the second tier, and, finally, how the third tier enables air-gapped clouds. 

Tier 1: On-node learning

Managing a cloud platform requires control loops and agents with many different granularities and time scales. Some agents need to be located on individual nodes, either because of latency requirements of the decisions they make, or because they depend on telemetry that is too fine-grained and large to leave the node. Examples of these agents include configuration (credentials, firewalls, operating system updates), services like virtual machine (VM) creation, monitoring and logging, watchdogs, resource controls (e.g., power, memory, or CPU allocation), and access daemons.  

Any agent that can use data about current workload characteristics or system state to guide dynamic adjustment of their behavior can potentially take advantage of machine learning (ML). However, current ML solutions such as Resource Central (SOSP’17) require data and decisions to run in a dedicated service outside of the server nodes. The problem is that for some agents this is not feasible, as they either have to make fast decisions or require data that cannot leave the node.  

In SOL: Safe On-Node Learning in Cloud Platforms (ASPLOS’22), we proposed a framework that allows local agents to use modern ML techniques in a safe, robust, and effective way. We identified three classes of local agents that can benefit from ML. First, agents that assign resources (CPU, memory, power) benefit from near real-time workload information. Making these decisions quickly and with fine-grained telemetry enables better assignments with smaller impact to customer quality of service (QoS). Second, monitoring and logging agents, which must run on each node, can benefit from online learning algorithms, such as multi-armed bandits to smartly decide which telemetry data to sample and at which frequency, while staying within a sampling budget. Lastly, watchdogs, which monitor for metrics that indicate failures, can benefit from learning algorithms to detect problems and take mitigating actions sooner, as well as detect and diagnose more complex problems that simpler systems would not detect. 

SOL makes it easy to integrate protections against invalid data, inaccurate or drifting AI models, and delayed predictions, and to add safeguards in the actions the models can take, through a simple interface. As examples, we developed agents to do CPU overclocking, CPU harvesting, and memory page hotness classification. In our experiments (Figure 3), the overclocking agent, for example, achieved near-peak normalized performance for different workloads, at nearly half of the power draw, while responding well to many failure conditions in the monitoring itself. See our paper for more details. 

Tier 2: Incident similarity and mitigation with LLMs

As an example of how AI systems can enable the second tier, we are exploring how LLMs can help in mitigating and finding the root cause of incidents in cloud operations. When an incident happens in a cloud system, either generated by automated alarms or by customer-reported issues, a team of one or more on-call engineers must quickly find ways to mitigate the incident (resolving the symptoms), and then find the cause of the incident for a permanent fix and to avoid the incident in the future.  

There are many steps involved in this process, and they are highly variable. There is also context that relates to the incident, which grows as both automated systems and on-call engineers perform tests, look at logs, and go through a cycle of forming, testing, and validating hypotheses. We are investigating using LLMs to help with several of these steps, including automatically generating summaries of the cumulative status of an incident, finding similar incidents in the database of past incidents, and proposing mitigation steps based on these similar incidents. There is also an ever-growing library of internal troubleshooting guides (TSGs) created by engineers, together with internal and external documentation on the systems involved.  We are using LLMs to extract and summarize information from these combined sources in a way that is relevant to the on-call engineer.  

We are also using LLMs to find the root cause of incidents. In a recent paper published in ISCE (2023), the Microsoft 365 Systems Innovation research group demonstrated the usefulness of LLMs in determining the root cause of incidents from the title and summary of the incident. In a survey conducted as part of the work, more than 70% of the on-call engineers gave a rating of 3 out of 5 or better on the usefulness of the recommendations in a real-time incident resolution setting.  

There is still enormous untapped potential in using these methods, along with some interesting challenges. In aggregate, these efforts are a great step toward the foundation for the second tier in our vision. They can assist on-call engineers, enable junior engineers to be much more effective in handling more incidents, reduce the time to mitigation, and, finally, give room for the most expert engineers to work on the third tier, focusing on complex, atypical, and novel incidents. 

Tier 3: Air-gapped clouds

We now turn to an example where the separation between the second and third tiers could enable significantly simplified operations. Air-gapped datacenters, characterized by their isolated nature and restricted access, provide a secure environment for managing sensitive data while prioritizing privacy. In such datacenters, direct access is limited and highly controlled, being operated locally by authorized employees, ensuring that data is handled with utmost care and confidentiality. However, this level of isolation also presents unique challenges when it comes to managing the day-to-day operations and addressing potential issues, as Microsoft’s expert operators do not have physical or direct access to the infrastructure.  

In such an environment, future tiered AIOps could improve operations, while maintaining the strict data and communication isolation requirements. The first tier would play a critical role by significantly reducing the occurrence of incidents through the implementation of automated operations. However, the second and third tiers would be equally vital. The second tier would empower local operators on-site to address most issues that the first tier cannot. Even with AI assistance, there would be instances requiring additional expertise beyond that which is available locally. Unfortunately, the experts in the third tier may not even have access to remote desktops, or to the results of queries or commands. LLMs would serve a crucial role here, as they could become an ideal intermediary between tiers 2 and 3, sharing high-level descriptions of problems without sending sensitive information.  

LLM-intermediated communication between remote experts (Tier 3) and generalist operators (Tier 2) to solve problems in an air-gapped datacenter.
Figure 4: LLM-intermediated communication between remote experts (Tier 3) and generalist operators (Tier 2) to solve problems in an air-gapped datacenter.

In an interactive session (Figure 4), an LLM with access to the air-gapped datacenter systems could summarize and sanitize the problem description in natural language (①). A remote expert in Tier 3 would then formulate hypotheses and send high-level instructions in natural language for more investigation or for mitigation (②). The LLM could use the high-level instructions to form a specialized plan. For example, it could query devices with a knowledge of the datacenter topology that the expert does not have; interpret, summarize, and sanitize the results (with or without the help of the generalist, on-site operators) (③); and send the interpretation of the results back to the experts, again in natural language (④). Depending on the problem, this cycle could repeat until the problem is solved (⑤). Crucially, while the operators at the air-gapped cloud would be in the loop, they wouldn’t need deep expertise in all systems to perform the required actions and interpret the results. 

Conclusion

Cloud platform operators have seen massive, continuous growth in scale. To remain competitive and viable, we must decouple the scaling of human support operations from this growth. AI offers great hope in increasing automation of platform management, but because of constant change in the systems, environment, and demands, there will likely always be decisions and incidents requiring expert human input. In this post, we described our vision of Tiered AIOps as the way to enable and achieve this decoupling and maximize the effectiveness of both AI tools and human expertise. 

The post Using AI for tiered cloud platform operation appeared first on Microsoft Research.

Read More

Collaborators: Project InnerEye with Javier Alvarez and Raj Jena

Collaborators: Project InnerEye with Javier Alvarez and Raj Jena

black and white photos of Microsoft Health Futures’ Senior Director Javier Alvarez and Dr. Raj Jena, a radiation oncologist at Addenbrooke’s hospital, next to the Microsoft Research Podcast

Episode 145 | August 17, 2023 

Transforming research ideas into meaningful impact is no small feat. It often requires the knowledge and experience of individuals from across disciplines and institutions. Collaborators, a new Microsoft Research Podcast series, explores the relationships—both expected and unexpected—behind the projects, products, and services being pursued and delivered by researchers at Microsoft and the diverse range of people they’re teaming up with.

In this episode, Dr. Gretchen Huizinga talks with Microsoft Health Futures Senior Director Javier Alvarez (opens in new tab) and Dr. Raj Jena (opens in new tab), a radiation oncologist at Addenbrooke’s hospital, part of Cambridge University Hospitals in the United Kingdom, about Project InnerEye, a Microsoft Research effort that applies machine learning to medical image analysis. The pair shares how a 10-plus-year collaborative journey—and a combination of research and good software engineering—has resulted in the hospital’s creation of an AI system that is helping to decrease the time cancer patients have to wait to begin treatment. Alvarez and Jena chart the path of their collaboration in AI-assisted medical imaging, from Microsoft Research’s initiation of Project InnerEye and its decision to make the resulting research tools available in open source to Addenbrooke’s subsequent testing and validation of these tools to meet the regulatory requirements for use in a clinical setting. They also discuss supporting clinician productivity—and ultimately patient outcomes—and the important role patients play in incorporating AI into healthcare.

Transcript

[TEASER] [MUSIC PLAYS UNDER DIALOGUE]

JAVIER ALVAREZ: On the third iteration, we actually moved to deep learning, and we started using GPUs in the cloud.

RAJ JENA: I’m really interested in this part of the story, the “final mile” story, where you actually take something and instead of just topping out at saying, “Hey, we did something. Let’s write a paper” — which we did do! — you actually stick with it and get it all the way through to clinical impact.

ALVAREZ: So we started training models with 30 million parameters. And this was a huge breakthrough. So we started to get really good feedback from Raj and his colleagues at Addenbrooke’s. Uh, yeah, it was a great experience.

JENA: In 2016, some changes came to the team. Javi joined, and we were so excited because he was a software engineer, where before we had been researchers talking to researchers, and it was the ability to know that really good software engineering was going to be able to take something we built as research and make it good enough to plumb in the hospital as Javi described. That was a real exciting moment.

[TEASER ENDS]


GRETCHEN HUIZINGA: You’re listening to Collaborators, a Microsoft Research Podcast showcasing the range of expertise that goes into transforming mind-blowing ideas into world-changing technologies. I’m Dr. Gretchen Huizinga.

[MUSIC ENDS]

I’m excited to be talking today with Javier Alvarez and Dr. Raj Jena. Javier is a Senior Director of Biomedical Imaging at Microsoft Health Futures in Cambridge, UK, and part of Project InnerEye, a machine learning technology designed to democratize AI for medical image analysis across the spectrum from research to practice. Raj is a radiation oncologist at Addenbrooke’s hospital, which is part of the Cambridge University Hospitals system, and he was also a collaborator with Project InnerEye during the research phase. Javier and Raj, welcome to the podcast. Now, before we peer into InnerEye, let’s get to know you a little bit better! Javier, I’ll start with you. Give us a brief overview of your training and expertise and then tell us about Microsoft Health Futures and your role there.

JAVIER ALVAREZ: Thank you for having me here. I’m Javier, and I lead the biomedical imaging team at Microsoft Health Futures. We are responsible for research, incubations, and moonshots that drive real-world impact across healthcare and life sciences inside MSR. Uh, yeah, my team is very diverse. We focus on end-to-end solutions. We collaborate with people like Raj, mostly clinicians, and we work on high-quality research, and we hope others can build on top of our work. We try to integrate our AI as a “friendly colleague.” And yeah, I have been in Microsoft for 10 years. My background is in computer science and engineering, and I have been always working on research and innovation projects, uh, focusing on high-risk/high-reward projects. And yeah, my first job at Microsoft was actually working on the first telemetry pipeline for Microsoft on, on the Azure cloud. And we helped several products like Skype, Xbox, Office, and Bing to get better insights into their data. And yeah, after that I joined Antonio Criminisi and Raj in 2016 to work on InnerEye. So yeah, I’m super, super excited to be here to share more about our work.

HUIZINGA: Well, Raj, our audience is a super smart one, but probably not all that well-versed on radiation therapy and neuro-oncology. So tell us about your work as a cancer doctor and a researcher, as well. What’s your background, and how would you define your role — or roles, plural — at Cambridge University Hospitals?

JENA: Thanks for the opportunity to join this discussion and to fly the flag for radiation oncology. It’s a really useful and very modern anti-cancer therapy. Half the people diagnosed with cancer who are cured will end up having radiation therapy as part of their treatment pathway. So I’m passionate about making radiation therapy as safe, as smart and accurate, and with as few side effects as possible. And I do that both in the context of my clinical work but also research work, where I focus mainly on sort of the analysis of images. We use an awful lot of imaging in radiation therapy to really target the radiation therapy. And it’s in that context, really, that I kind of started, you know, with this collaboration over 10 years ago now.

HUIZINGA: Wow. What would you say your “split” is? I mean, as a doctor or a researcher, how do you balance your time?

JENA: Some people would say I have the dream job because I do half and half. Half clinical work and half research work. And I really like that because it means that I can anchor myself in the clinic. I don’t lose track of why we’re trying to do these things. We’re trying to bring benefit to patients, to my patients. But it also means I’ve got the time to then explore on the research side and work with the best and brightest people, including, you know, many of the guys I’ve met at Microsoft Research.

HUIZINGA: Right. You know, as a side note, I just finished a book called The Butchering Art about Joseph Lister, who was both a surgeon, in the Victorian era, and also a researcher and sort of discovering this idea of germ theory and so on with Louis Pasteur, etc. So I’m, I’m ensconced in this idea of research and practice being so tightly woven together. So that’s really awesome. Well, before we get into specifics on the collaboration, Project InnerEye warrants a little bit of explication itself. From what you’ve described, I’d call it a “machine learning meets radiation therapy” love story, and it’s a match made in heaven, or at least the cloud. So what’s the catalyst for InnerEye, and how have the research findings changed the game? Raj, why don’t you talk about it from the medical angle?

JENA: Sure. So, um, as with many things, it started by chance. I went to a talk given by Antonio Criminisi, who Javi mentioned. He was the person that kind of established the InnerEye group at Microsoft Research back in 2011, I think. And he was talking about the way that his team, that did computer vision at the time, were using algorithms that had been developed to detect the human pose so that actually you could play video games without a controller. So this was technology that we all know and love in terms of systems like Kinect and the Xbox. You know, I had one of those! But I went to listen because Antonio wanted to apply it to medical imaging. So in the same way that they were using algorithms to mark out where the body was or where the hands were, could we also mark out tissues and structures within the body? So I said to him, after the end of this, you need to come and see what we do in radiation therapy because this really matters. And to his credit, he did! A couple of weeks later, he came to the department, and he went into a room where dozens of my colleagues were sitting in front of computers, working as fast and accurately as they could, to manually mock up all this normal anatomy on CT scans so we could get our patients onto radiotherapy as quickly as possible. And that was the light bulb moment where he realized, yeah, we need to make this better; we need to make this faster and use, initially, algorithms that came from computer vision, but now, you know, we’ve moved slowly over to things now that we would consider to be sort of machine learning and AI algorithms.

HUIZINGA: Right. Well, I should note that I’ve interviewed Antonio on this show, um, a few years back. And so if listeners want to go back to the archives and find the episode with Antonio Criminisi, that was a great one. So what you just described is sort of a “I can do this, but I can’t do it very fast” scenario. So let’s go into the geek side. Um, Javier, talk about the technical aspects of InnerEye and what it brought to the game. How has the research evolved? Where did it start, from your perspective, and where has it come in the cloud era?

ALVAREZ: Sure, yeah. I would be happy to geek out a bit! Um, so one of the biggest challenges that we faced in radiotherapy was working with CT scans. So CT scans are 3D images that contain around 20 million 3D pixels. We usually call them voxels. And we need to classify each of them as background, different organs, or tumor. And this actually requires a lot of compute and memory. So when we started in 2016, actually we started using very simple models called decision forests, and these can be trained on CPUs. So it was really easy to train them, but one of the problems with decision forests is that you actually have to do the feature extraction manually. So we had to code all that, and it’s a bit of a limitation of this approach. So in the second iteration, we started connecting the hospital to the cloud, and that gave us access to more compute, and we started introducing what we call the InnerEye-Gateway. So this actually helped to automatically route de-identified CT scans to the cloud and run the computation there. And we managed to integrate the model seamlessly into the workflow. So clinicians, when they go to open their CT scan, they already have the segmentation ready to be used on their favorite planning tool. They can review it and refine it. And then on the third iteration, we actually moved to deep learning, and we started using GPUs in the cloud. And this actually helped us create bigger models with more capacity to learn these complex tasks. So we started training models with 30 million parameters. And this was a huge breakthrough. So we started to get really good feedback from Raj and his colleagues at Addenbrooke’s. Uh, yeah, it was a great experience. We had to iterate many times and go to the hospital down the road here in Cambridge. And yeah, it wasn’t a straight path. We had to learn a lot about the radiotherapy workflow, and yeah, we actually learned that it’s actually very hard to deploy AI.

HUIZINGA: Yeah. Every time we do a podcast, um, listeners can’t see the other person shaking their head, but Raj has been shaking his head the whole time Javier’s talking. Talk a little bit, Raj, about that marriage of workflow and machine learning. How did it change your world?

JENA: Yeah, I mean, I think I’m really interested in this part of the story, the “final mile” story, where you actually take something and instead of just topping out at saying, “Hey, we did something. Let’s write a paper” — which we did do! — you actually stick with it and get it all the way through to clinical impact. And actually, you know, from my point of view, in 2016, some changes came to the team. Javi joined, and we were so excited because he was a software engineer, where before we had been researchers talking to researchers. And it was the ability to know that really good software engineering was going to be able to take something we built as research and make it good enough to plumb in the hospital as Javi described. That was a real exciting moment. And then the second exciting moment that followed from that was the first time our clinicians saw the output from that third iteration that Javi mentioned, the deep learning model, and you looked at their reactions because they’re thinking, I couldn’t immediately tell this was done by AI.

HUIZINGA: Wow!

JENA: And that was the moment I will never forget. Because they were very kind to us. They evaluated the models at the beginning, when the output wasn’t good enough and they said, hey, this is interesting, but, you know, we’re not really going to use it. It’s not really going to save us time. And they stuck with us, you know, the clinician part of the team stuck with the researcher part of the team, and we kept going. And it was that moment really when everything came together and we thought, yeah, we’re onto something. That was … that was huge.

HUIZINGA: Yeah. It sounds like you’re talking about how you met, but I’m not sure if that’s the whole story. So let’s talk about the meet-up and how the two of you, specifically as collaborators, started working together. I always like to call this “how I met your mother,” but I’m interested to hear each side of the story because there’s always an “aha moment” on what my work could contribute to this and how theirs could contribute to mine – the kind of co-learning scenario? So, Raj, go a little further in describing how Javi and you got together, and then we’ll see if Javier can confirm or deny the story! [LAUGHS]

JENA: Yeah. So as, as I mentioned … so I had already been working with Antonio purely as research for a little while, and Antonio was tremendously excited because he said the team was going to expand, and Javier was one of the first hires that we actually had to join the team. And I remember Antonio coming in and said, “We’ve just interviewed and appointed this guy. You wait till you … you wait till you meet him,” kind of thing. And then Javi joined us. From my point of view, I am a doctor that likes to code, so I like seeing code come to action, and I know the joy that that brings. And there was this amazing time, shortly after Javi first joined us, where I would come and meet the team about once a week and we would say, hey, you know, maybe we should do this and maybe this would be the way to solve this particular problem, or we need to design a tool so we can visualize the imaging and the machine learning parts of our workflow together and work on them together. And I come back next week, and the thing was practically built! And, you know, to me, that was just the amazing thing … is what you realized is that where before we had been struggling along with just researchers trying to do their best — you know, we know the maths but not how to build things — all of a sudden, Javi comes along and just the rate and the pace at which stuff move forwards, it was incredible! So yeah, that’s my side of the story.

HUIZINGA: I love it. Um, in fact, a doctor that likes to code … I’m wondering if Javier is a computer scientist that likes to … I don’t even know how to fill in the blank on your end … radiotherapy? Dabble in operation? Javier, what’s your side of the story?

ALVAREZ: Yeah, I think for me, it was really amazing to work with Raj because he was telling us about all the physics about radiotherapy, and this was super exciting. We went on multiple trips to Addenbrooke’s to see the radiotherapy department. So actually, yeah, for me, I, I … that was my first project on healthcare, so I had to learn a lot. So yeah, it was super useful to work with Raj, learning about the workflow in radiotherapy, how the data moves, as well. It was super useful. I think actually we met here with Antonio during lunch in the lab. Uhh, yeah…

HUIZINGA: During lunch in the lab … ! [LAUGHS] It would be a good time now for me to just clarify that Addenbrooke’s is the old name of the hospital that’s part of … um, Raj, explain that!

JENA: That’s right. So we’re now called Cambridge University Hospitals to reflect the fact that we’re a big biomedical campus and we actually have multiple hospitals: Addenbrooke’s, the Rosie, uh, Papworth Hospital … but affectionately, people who have lived in Cambridge still call it Addenbrooke’s.

HUIZINGA: That’s good. We can call it both. Javier, as we’re recording this podcast, some big things are going on in the UK. Um, it’s the 75th anniversary of the National Health Service, or NHS, and you guys recently got an award from that organization. You’ve written a JAMA paper and even the prime minister posted something on LinkedIn about your work, which is pretty cool! Tell us about some of the accolades associated with InnerEye right now, from where it started — you know, as a twinkle in someone’s eye — to where it is now, what kind of attention it’s getting. What’s the buzz?

ALVAREZ: Yeah, absolutely. Yeah, maybe I’ll talk about the JAMA paper, and I will let Raj talk about the NHS part, because I think this has been mostly his work.

HUIZINGA: Perfect.

ALVAREZ: So yeah, I think when we started getting really good results with our models in Addenbrooke’s and sharing it with the clinicians, we thought that yeah, we wanted to run a bigger study on evaluating the models for prostate and head and neck. Uh, so we ran a study that was published in JAMA, and here we asked the question of, OK, are these models actually acceptable and accurate enough for radiotherapy planning? And can we actually reduce the time in the workflow? So we, we actually got around eight datasets from all around the world, very diverse datasets from radiotherapy planning, and we set aside a couple of them for external validation. So we didn’t use those for training. And then we used the, the rest of them for training the model. And we actually show in the paper that the model generalizes to the external datasets, so it’s quite robust, using different protocols in radiotherapy. And we also did some interobserver variability study to check that the variability of the AI model is similar to the variability that we observed between different clinicians. And, yeah, as part of the paper, we actually open-sourced all the code. This is how Addenbrooke’s actually started to think about deploying the models clinically. Uh, yeah, in fact this work was recognized with this NHS AI Award and now with the NHS anniversary, but, yeah, I’ll let Raj talk about this part in the hospital.

HUIZINGA: Well, before we go to Raj, I want you to just clarify, because I think this is super interesting. You’ve got the paper and you’ve got practice. And what’s fascinating … I’ll say it again—I just finished the book—but what Joseph Lister did was practice and show how his theories and his work made a difference in his patients’ lives. But what you’re talking about, as you mentioned, Javier, is background, organ, tumor …

ALVAREZ: Yeah.

HUIZINGA: So those three things have to be differentiated in the radiologist’s workflow to say, I’m not going to shoot for the background or the organ; I want to get the tumor. And what you’re saying, Javier, is that this tool was able to do sort of human-level identification?

ALVAREZ: Yeah. Yeah, exactly. Yeah. This is what we, we showed in the JAMA paper. Yeah.

HUIZINGA: Well, Raj, talk about it from the medical angle. Um, what’s the buzz from your end?

JENA: Sure. Yeah. So, so InnerEye is a toolkit, and it was great to see it being used for all sorts of things, but in radiation therapy, we’re using that toolkit specifically to mark out the healthy organs that need to be shielded from radiation. At the moment, we’re not using InnerEye to try and mark out the tumor itself because tumors change a lot from person to person. And so what our design was, was to build something that very much assists rather than replacing the oncologist so that when the oncologist sits down to do this task, about 90 percent of the time is spent marking out all of the healthy organs and 10 percent of the time on the tumor. Actually, we’d love it to be the other way around. And that’s what this tool does. It means that when the oncologist sits down, all of the healthy organs that sit around the tumor that need to be shielded as much as possible from the radiation, that’s already done. So the oncologist goes through … they have to review it, obviously, and check each one is accurate. And in our real-world testing, we found out that about two times out of three, the tool does a good enough job that its output can be used directly without changing anything, which is really good.

HUIZINGA: Wow.

JENA: That means they can then focus on contouring the tumor, and it means the overall time taken to complete this task can be about two and a half times faster. Now, when you think, for the complex tumors that we deal with, that can take up to two hours, that’s a lot of time saving and that’s time given back to the oncologist to spend in front of the patient, basically. So from our point of view, Javi mentioned this, uh, NHS award—it was this AI award that we were given by our national healthcare service—and what that was charged to do was to pick up the baton, once Microsoft had turned InnerEye to an open-source tool, because to turn that open-source tool into a potential medical device that could be used in the cloud for real clinical care, needs a whole other level of sort of checks and evaluations. And that’s what we did, basically, in our team. We worked together with the team in our hospital that builds things as medical devices. Usually, in our hospital, that team builds what we call prosthetics. So things that you would put into a patient or onto a patient when they’ve been injured or something like that. They’d never done it for a software device. But it was great because we had some really strong starting points. First of all, we knew that the actual InnerEye code was fantastic, and secondly, we knew from the JAMA paper that the initial evaluations, in terms of how useful these things were, stood up very well. So that, together with our own clinical evaluations of having the tool plumbed in and seeing it being used, meant that we kind of already knew that this was going to be possible, that we were likely to succeed in this task.

HUIZINGA: Hmmm. Go back a little bit, Raj. You’ve mentioned that tumors change from patient to patient, so it’s not always the same. Do they also change over time?

JENA: Yes. Hopefully, they shrink after radiation therapy and the treatments that, that we give! And so yes, I mean, it’s a big part of what these sorts of tools will continue to be explored in the future is actually tracking how tumors change over time, and that’s a big area. But, you know, we chose to pick on something that was achievable, that wasn’t too risky, and that would already achieve real utility, you know, in, in a hospital. So we already did that with even what it does in terms of marking out the healthy organs. The tumor stuff will come, I’m sure, in time. But we already proved that you could use these tools and build them to be useful.

HUIZINGA: Right. Javier, you mentioned earlier that one of the mandates of the lab is high-risk/high-reward research. This seems to have super high reward, but it’s about now that I ask what could possibly go wrong to everybody that comes on the show. [LAUGHS] Some people hate it. Some have worried that AI will take jobs away from doctors, and I’m sure there’s other worries, as well. What thought have you given to potential consequences, intended and unintended, as you move forward with this work, and what strategies are you employing to mitigate them? Let’s hear from the technologist first, and then we’ll hear from the doctor.

ALVAREZ: Yeah, absolutely. I believe, uh, AI safety should be our top priority in any of our AI products in healthcare. And yeah, it is super important to consider the intended and unintended consequences of deploying these models into the clinical workflow. One of the top-of-mind concerns for the public is that AI might take jobs away from doctors, but actually, we need more doctors. So one out of five jobs in oncology are not being filled in the UK, and the way we are thinking about deploying these AI models is to augment the clinicians. So we want to help them be more productive and deliver better patient outcomes. So the models are working alongside the doctor. And in the case of InnerEye, we are delivering more accurate and faster segmentation. Other concerns could be biases in the models, and to mitigate this, we usually work with clinicians like Raj to build diverse and good datasets that are representative of the population. As always, we make sure the clinician has the ultimate decision and they approve the work of the AI model.

HUIZINGA: Raj, what’s your take on the “what could possibly go wrong” question?

JENA: Yeah, it’s an interesting one. You know, we’ve identified 500 risks, and we’ve gone through each and every one of them and made sure either that the software means that it can’t happen or we mitigate it, basically. Actually, though, the biggest thing that you can do to mitigate risk is talk to patients. And as part of this award, we got to do two really interesting consultations with patients, because then you understand the patient’s perspective. And two things, very briefly, that I took home from that: the first is, is that patients say, yeah, OK, this isn’t what I thought of when I think about AI. I understand that you’ve used incredibly advanced machine learning tools, but actually, this is a very simple task, and the risk is relevant to the task rather than the technology. So that was a useful thing. And the second thing is that they said, it’s all about who’s in control. I understand how this system works to assist an oncologist, and the oncologist retains ultimate control, and that is a huge thing in terms of enhancing trust. So I think as you move from these types of systems to systems where actually you start to push the envelope even further, it’s really important to take patients with you because they keep you grounded, and they will give you really good insights as to what those real risks are.

HUIZINGA: Right.

JENA: The other thing is, is that everyone knows, just like any job, you know, there are the bits that excite you and reward you. And then there are the bits that are kind of dull and tedious. And, you know, Eric Topol has this famous phrase that he said, you know, which is that good AI should give clinicians the gift of time, and that’s what you really want … is, is that you want the AI to allow you to spend more of the time that interests you, excites you, fascinates you, motivates you. And I think, you know, from my point of view, I’m a great believer that that’s what AI will do. It will actually, you know … doctors are very adaptive. They’ll learn to use new tools, whether it’s a robot from a surgeon’s point of view or a new AI algorithm, but they’ll use it in the best way possible to actually kind of still allow them to achieve that patient-centric care.

HUIZINGA: Well, that’s a lovely segue way into the next question I had for you anyway, which is what could possibly go right. And you, Raj, referred to the triple benefit of InnerEye. Go a little deeper into who this research helps and why and how.

JENA: I think it’s a really important illustration of how you can democratize AI. A lot of AI research work stays as research work, and people don’t really understand how these tools … they hear a lot about it, and they read a lot about it, but they don’t understand how it’s actually going to make a difference for them in the clinic. And I think that’s why, you know, stories like InnerEye are particularly meaningful. We’re not talking about building an AI that lets us understand something that the human couldn’t understand before. So it’s not earth shattering in that sense. And yet, even despite that simplicity, so many of my colleagues, they get it. They go, OK, you know, we really understand you’ve actually built something, and you’ve put it here into the clinic. And I think, you know, from my point of view, that’s the real value. There are other value propositions relating to the fact that it was open-source that lends itself to democratization and sharing and also because it runs in the cloud and that basically you don’t need a hospital that’s already got a quarter million-pound computer and only those hospitals with the latest kit can actually use it. So it means that it is just as easy to deploy in a small hospital as it is in a big hospital. So for me, those are the key messages, I think.

HUIZINGA: Javier, Raj just alluded to the open-source nature of this tool or toolkit. I want you to drill in a little more on that story. Um, I understand this lives on GitHub. How did that decision come about, and why do you believe this will benefit people in the future?

ALVAREZ: Yes. So the decision to make the code open-source came from the desire to democratize the access to these AI models. So we wanted to make sure everyone would be able to build on top of our research. And that was the way that we found to give access to Addenbrooke’s to create their own medical devices. We thought that also having open-source code allows us to be more transparent with our research and to gain trust on the technology. It also helps us, as well, to get help from the community on building this project. So we had people helping us to fix bugs and to make sure, uh, the algorithms are not biased. As part of the open-source, we made available three big components. One is the InnerEye-Gateway that routes the images to the AI models in the cloud and de-identifies the data. We also made available the InnerEye inference code that basically is an API that the InnerEye-Gateway uses to run the models. And also all the training code to be able to reproduce our work. Uh, yeah, we are super excited to see how people will use the open source in the future. We also have some startups that are using our code and trying to build products with it.

HUIZINGA: Go a little further, Javier, because this is interesting. Obviously, radiation therapy is one application of InnerEye, but I imagine it could be useful for other medical applications or other … actually, probably anything that you need to identify something, you know, the signal in the noise.

ALVAREZ: Yeah, um, segmentation in medical imaging is super important, so it allows you to actually strike measurements from the images. So, yeah, it can be useful, as well, in some radiology scenarios like clinical trials where you want to track tumors over time. And also in surgery where you want to plan surgery, so you need to understand how vessels are feeding into the tumor. So, yeah, segmentation is super important, and I think the components that we have could be useful for many different scenarios in medical imaging.

HUIZINGA: Well, Raj, I always like to know where the project is on the spectrum from lab to life, and as I understand it, after the InnerEye team completed the research and made the code open source, Addenbrooke’s took the regulatory baton for medical device approval in the UK, but it’s still not over. So continuing with that analogy: if this were a relay race and the idea was the first leg, who else is running, where are you in the race, and who brings it across the finish line?

JENA: Yeah, that’s a really good analogy. I, I might use that one in the future. So, uh, there are other commercial organizations that have systems that will perform this work. They are quite expensive, actually, to buy into if you want to buy them outright. There are some where, a bit like ours, you can scale it so that you pay as each patient’s data is processed. They also are quite expensive for some emerging, uh, healthcare markets, and by emerging healthcare markets, I include my own in the, in the NHS. To our knowledge, we are the only cloud-based, open-source medical imaging device that we’re actually trying to build within the NHS. So that is truly unique. And in terms of where we are on that journey to take the, you know, the InnerEye open source all the way through to a medical device that actually, you know, you can buy off the shelf and have all of the associated support and, you know, technical specifications that you need to use in practice, we’re at this point where the hospital has basically finished all of that work. The hospital has been incredibly supportive of this entire research for the last 10 years, but it can’t act as a manufacturer. It’s quite difficult to do that. So we’ll then partner with a manufacturer, actually a company that’s a friend to us in the hospital and to the InnerEye team, too, and they will be responsible for basically taking all of the work that we’ve done to prepare the medical device certification documents and then actually going through that device certification and bringing it to the market. So it’s very exciting, you know, to be literally at that final stage of the, of the story.

HUIZINGA: Right. Ready to run across the finish line. I like to end each podcast with a little vision-casting, and I’ve been shocked at how profoundly healthcare has advanced in just the last hundred and fifty years. So I won’t ask you to project a hundred and fifty years out, but if InnerEye is a truly game-changing technology, what does healthcare, and especially oncology, look like in the future, and how has your work disrupted the field and made the world a better place? Javier, why don’t you talk about it from the technical aspect, and then maybe Raj can bring the show home from the medical aspect.

ALVAREZ: Sure. Yeah. One exciting, uh, development on the horizon is the use of GPT-4 in radiology or maybe even in radiotherapy. We are also working on multimodal learning now and trying to expand the work that we have done with InnerEye to radiology, where there is a much bigger opportunity. Uh, with multimodal learning, we are trying to integrate multiple sources of data like medical images, text, audio, and also different types of modalities because we want to make sure we can use CT scans, MRI, x-rays … and yeah, this requires developing new types of models, and these models need to be able to generalize to many different tasks because we have a huge need for AI in healthcare, and the current way of, uh, building these models is we develop one model for every use case, and this is not scalable. So we need more general-purpose models that can be specialized really quickly to different needs. And I think the other thing that excites me is actually … maybe this is quite far away, but how do we create a digital copy of the human body for every person on the planet and we create some sort of digital twin that we can actually use to run simulations? And I think medical imaging is going to be a big, important part of this. And we can use that digital twin to run interventions and figure out how can we treat that patient, what is happening with that patient, so, yeah, I think it’s super exciting, the potential of AI in healthcare, but of course we need to make sure we look at the risks, as well, of using AI. But yeah, there are many positive opportunities.

HUIZINGA: Right. I’m just shaking my head and my jaw is dropped: my digital twin in the future! [LAUGHS] Raj?

JENA: I mean, I think it’s a tremendously exciting time, and we live in an exponential age where things are coming and new innovations are coming at a faster and faster rate. I think what we have to do is to really, as doctors, learn from history and adapt to make sure that we stay able to retrain and reconfigure ourselves, and reconfigure medicine, to keep up to speed with the digital technologies. You know, just to give an example to what you were talking about with Joseph Lister; it’s fascinating. You know, I always think about, you know, Semmelweis and a similar story. So he was an Austrian obstetrician who, for the audience, a hundred and fifty years ago worked out that actually if you wash your hands after delivering a baby from a mother, the mother was less likely to get a fever and less likely to die. He was 29 when he worked that out, and yet it took nearly 20 years for him to convince the medical community basically because they felt threatened. And, you know, that was the key thing. They just, you know, there wasn’t that level of understanding of, you know, that we need to think and adapt and incorporate new ideas and new thinking. And we will be challenged, you know, severely, I think, in the years to come, with new technologies. I’ve just come back from a conference talking about foundation models and GPT in medical imaging and, um, you know, there was a huge amount of excitement. One really interesting point that I heard is that these models were built on all of the images, mainly generated by cameras, on the internet and social media sphere, and if you add up all of the medical imaging that’s ever been done, it’s only about 1 percent of that image data. So it’s always going to be hard. And of course, we can’t always access all of that information, you know, for patient confidentiality and, you know, numerous factors. So it may take a little while before we have these amazing, generalizable AI models in medicine, but I’m sure they’ll come, and I think the biggest thing that we can do is to be ready for them. And the way I believe that you do that is in little steps, is to start bringing very simple, explainable, transparent AI into your workplace—of which, you know, InnerEye is a really good example—so that, you know, you can look inside the box, start to ask questions, and understand how it works because then, when the next AI comes along, or maybe the AI after that, that integrates more data than the human mind can hold together to make a decision, then you need to be comfortable with your ability to query that, to interrogate that, and make it safe, you know, for your patients. Because at the end of the day, for thousands of years, doctors have evaluated things. And yeah, I think, I think those things won’t change, you know, but we just … we’ve got to up our game, you know, so I’ve got to be as good as Javi is in kind of understanding how these things, how these things work. So …

HUIZINGA: Well, I love my job because I learn something new every show. And this one has been a humdinger, as they say. Thank you so much for taking time to educate us on InnerEye today.

ALVAREZ: Thank you.

JENA: Thanks. It’s been a pleasure.

The post Collaborators: Project InnerEye with Javier Alvarez and Raj Jena appeared first on Microsoft Research.

Read More

Research Focus: Week of August 14, 2023

Research Focus: Week of August 14, 2023

Microsoft Research Focus 22 | Week of August 14, 2023

Welcome to Research Focus, a series of blog posts that highlights notable publications, events, code/datasets, new hires and other milestones from across the research community at Microsoft.

NEW RESEARCH

HyWay: Enabling Mingling in the Hybrid World

As remote work has grown in recent years, videoconferencing tools like Teams help support structured meetings with a scheduled time, a specific agenda, and a set of invitees. For unstructured interactions, like hallway conversations or water cooler chats, newer “spatial” tools such as Gather and SpatialChat arose. But these are confined to users in virtual-only settings.

Many organizations and events now offer a mix of in-person and remote attendance, or “hybrid” work. This creates a new challenge for remote workers or conference goers who want to stay visible to, and mingle with, their colleagues attending in person. Existing tools fall short either in not supporting unstructured interactions, or in not supporting hybrid settings, or both.

In a recent paper: HyWay: Enabling Mingling in the Hybrid World, researchers from Microsoft present a system to support informal interactions among physical and virtual participants. HyWay lets remote users see and hear, and be seen and heard by, in-person users using large displays placed in hallways or “physical zones,” with the ability to move between the zones using a map-based interface. In-person users, who aren’t tethered to a device or app, can simply walk from one zone to another.

The paper includes user survey findings from multiple deployments.


NEW RESEARCH

Auto-Tables: Synthesizing Multi-Step Transformations to Relationalize Tables without Using Examples

Relational tables, where each row corresponds to an entity and each column corresponds to an attribute, are the standard tables in relational databases. However, a survey of real spreadsheet-tables and web-tables shows that over 30% of tables “in the wild” do not conform to the relational standard. This means complex table-restructuring transformations are needed before these tables can be queried using SQL-based analytics tools. Unfortunately, the required transformations are non-trivial to program, creating a substantial pain point for technical and non-technical users alike, as evidenced by large numbers of forum questions in places like StackOverflow and Excel/Power BI/Tableau forums.

In a new paper: Auto-Tables: Synthesizing Multi-Step Transformations to Relationalize Tables without Using Examples, researchers from Microsoft present a system that can automatically synthesize pipelines with multi-step transformations (in Python or other languages). This system transforms non-relational tables into standard relational forms for downstream analytics, obviating the need for users to manually program transformations.

The research includes an extensive benchmark for this new task, compiled by collecting 244 real test cases from publicly available spreadsheets and online forums. The accompanying evaluation suggests that Auto-Tables can successfully synthesize transformations for over 70% of test cases at interactive speeds, without requiring any input from users, making this an effective tool for both technical and non-technical users to prepare data for analytics.


NEW RESEARCH

Learning to Retrieve In-Context Examples for Large Language Models

In-context learning is an emerging paradigm that allows large language models (LLMs) to perform tasks with few-shot examples, without requiring any updates to the model parameters. However, the effectiveness of in-context learning is heavily reliant on the quality of the selected examples.

In a new paper: Learning to Retrieve In-Context Examples for Large Language Models, researchers from Microsoft propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples for LLMs. This framework initially trains a reward model based on LLM feedback to evaluate the quality of candidate examples, followed by knowledge distillation to train a bi-encoder-based dense retriever. Experiments on a suite of 30 tasks demonstrate that the framework significantly enhances in-context learning performance. The research also demonstrates the generalization ability of the framework to unseen tasks during training. An in-depth analysis reveals that the model improves performance by retrieving examples with similar patterns, and the gains are consistent across LLMs of varying sizes.


NEW RESEARCH

End-to-End Word-Level Pronunciation Assessment with MASK Pre-training

The Computer-Aided Pronunciation Training (CAPT) system is a powerful tool designed to help people improve their language skills by using advanced AI technologies. Pronunciation assessment is a major challenge in CAPT, especially at the word (phoneme)-level. To obtain word (phoneme)-level scores, current methods usually rely on aligning components to obtain acoustic features of each word (phoneme), which limits the performance of assessment to the accuracy of alignments.

To address this problem, a new paper from researchers at Microsoft: End-to-End Word-Level Pronunciation Assessment with MASK Pre-training, proposes a simple, yet effective method called Masked pre-training for Pronunciation Assessment (MPA). By incorporating a mask-predict strategy, MPA allows the model to train in an end-to-end manner, eliminating the problem of misalignment in word-level assessment. Furthermore, the researchers designed two evaluation strategies to enable the model to conduct assessments in both unsupervised and supervised settings. Experimental results on the SpeechOcean762 dataset demonstrate that MPA could achieve better performance than previous methods, without any explicit alignment. Despite this, MPA still has some limitations, such as requiring more inference time and reference text. Those limitations are expected to be addressed in future work.

The post Research Focus: Week of August 14, 2023 appeared first on Microsoft Research.

Read More

Microsoft at KDD 2023: Advancing health at the speed of AI

Microsoft at KDD 2023: Advancing health at the speed of AI

This content was given as a keynote at the Workshop of Applied Data Science for Healthcare and covered during a tutorial at the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, a premier forum for advancement, education, and adoption of the discipline of knowledge discovering and data mining.

Microsoft at KDD 2023: Advancing health at the speed of AI

Recent and noteworthy advancements in generative AI and large language models (LLMs) are leading to profound transformations in various domains. This blog explores how these breakthroughs can accelerate progress in precision health. In addition to the keynote I delivered, “Applications and New Fronters of Generative Models for Healthcare,” it includes part of a tutorial (LS-21) being given at KDD 2023. This tutorial surveys the broader research area of “Precision Health at the Age of Large Language Models,” delivered by Sheng Zhang, Javier González Hernández, Tristan Naumann, and myself. 

A longstanding objective within precision health is the development of a continuous learning system capable of seamlessly integrating novel information to enhance healthcare delivery and expedite advancements in biomedicine. The National Academy of Medicine has gathered leading experts to explore this key initiative, as documented in its Learning Health System series. However, the current state of health systems is far removed from this ideal. The burden of extensive unstructured data and labor-intensive manual processing hinder progress. This is evident, for instance, in the context of cancer treatment, where the traditional standard of care frequently falls short, leaving clinical trials as a last resort. Yet a lack of awareness renders these trials inaccessible, with only 3 percent of US patients finding a suitable trial. This enrollment deficiency contributes to nearly 40 percent of trial failures, as shown in Figure 1. Consequently, the process of drug discovery is exceedingly slow, demanding billions of dollars and a timeline of over a decade.

Figure 1: This pie chart shows the reasons for clinical trial termination for cancer treatment. Insufficient enrollment accounts for 38.7% of these failures.
Figure 1: This pie chart shows the reasons for clinical trial termination for cancer treatment. Insufficient enrollment accounts for 38.7% of these failures. 

On an encouraging note, advances in generative AI provide unparalleled opportunities in harnessing real-world observational data to improve patient care—a long-standing goal in the realm of real-world evidence (RWE), which the US Food and Drug Administration (FDA) relies on to monitor and evaluate post-market drug safety. Large language models (LLMs) like GPT-4 have the capability of “universal structuring,” enabling efficient abstraction of patient information from clinical text at a large scale. This potential can be likened to the transformative impact LLMs are currently making in other domains, such as software development and productivity tools.

Microsoft Research Podcast

Collaborators: Holoportation™ communication technology with Spencer Fowers and Kwame Darko

Spencer Fowers and Kwame Darko break down how the technology behind Holoportation and the telecommunication device being built around it brings patients and doctors together when being in the same room isn’t an easy option and discuss the potential impact of the work.

Digital transformation leads to an intelligence revolution

The large-scale digitization of human knowledge on the internet has facilitated the pretraining of powerful large language models. As a result, we are witnessing revolutionary changes in general software categories like programming and search. Similarly, the past couple of decades have seen rapid digitization in biomedicine, with advancements like sequencing technologies, electronic medical records (EMRs), and health sensors. By unleashing the power of generative AI in the field of biomedicine, we can achieve similarly amazing transformations in precision health, as shown in Figure 2.

Figure 2: Left shows digital transformation in biomedicine, as signified by genome sequences, electronic medical records, and health sensors. Right shows how LLMs can accelerate progress towards precision health by improving access, safety, and preventative care.
Figure 2: Large-scale digitization of biomedical data, such as genome sequences and electronic medical records, enables accelerated progress towards precision health fueled by generative AI and LLMs. 

Microsoft is at the forefront of exploring the applications of LLMs in the health field, as depicted in Figure 3. Our PubMedBERT models, pretrained on biomedical abstracts and full texts, were released three years ago. They have sparked immense interest in biomedical pretraining and continue to receive an overwhelming number of downloads each month, with over one million in July 2023 alone. Numerous recent investigations have followed suit, delving deeper into this promising direction. Now, with next-generation models like GPT-4 being widely accessible, progress can be further accelerated.

Figure 3: Progress in LLMs for health application, from Microsoft’s PubMedBERT (left, 2020) to an explosion of recent biomedical LLMs (middle, 2022) to the latest GPT-4 (right, 2023)
Figure 3: Microsoft is among the first to explore large language models in health applications.

Although pretrained on general web content, GPT-4 has demonstrated impressive competence in biomedical tasks straightaway and has the potential to perform previously unseen natural language processing (NLP) tasks in the biomedical domain with exceptional accuracy. Notably, research studies show that GPT-4 can achieve expert-level performance on medical question-answer datasets, like MedQA (USMLE exam), without the need for costly task-specific fine-tuning or intricate self-refinement.

Similarly, with simple prompts, GPT-4 can effectively structure complex clinical trial matching logic from eligibility criteria, surpassing prior state-of-the-art systems like Criteria2Query, which were specifically designed for this purpose, as shown in Figure 4.

Figure 4: Table showing test results on structuring clinical trial eligibility criteria comparing GPT-4 with prior state-of-the-art systems such as Criteria2Query.
Figure 4: Comparison of test results on structuring clinical trial eligibility criteria. GPT-4 outperformed the previous state-of-the-art method without requiring any specialized training.

Transforming real-world data into a discovery engine

In the context of clinical trial matching, besides structuring trial eligibility criteria, the bigger challenge lies in structuring patient records at scale. Cancer patients may have hundreds of notes where critical information like histopathology or staging may be scattered across multiple entries, as shown in Figure 5. To tackle this, Microsoft and Providence, a large US-based health system, have developed state-of-the-art self-supervised LLMs like OncoBERT to extract such details. More recently, preliminary studies have found that GPT-4 can also excel at structuring such vital information. Drawing on these advancements, we developed a research system for clinical trial matching, powered by LLMs. This system is now used daily on a molecular tumor board at Providence, as well as in high-profile trials such as this adoptive T-cell trial, as reported by the New York Times.

Figure 5: A graphic illustrating a de-identified example cancer patient with hundreds of clinical notes spanning across many note types.
Figure 5: Vital information about a cancer patient may be scattered among hundreds of clinical notes, as illustrated by this de-identified example.

Clinical trial matching is important in its own right, and the same underlying technologies can be used to unlock other beneficial applications. For example, in collaboration with Providence researchers, we demonstrated how real-world data can be harnessed to simulate prominent lung cancer trials under various eligibility settings. By combining the structuring capabilities of LLMs with state-of-the-art causal inference methods, we effectively transform real-world data into a discovery engine. This enables instant evaluation of clinical hypotheses, with applications spanning clinical trial design, synthetic control, post-market surveillance, comparative effectiveness, among others.

Towards precision health copilots

The significance of generative AI lies not in achieving incremental improvements, but in enabling entirely new possibilities in applications. LLM’s universal structuring capability allows for the scaling of RWE generation from patient data at the population level. Additionally, LLMs can serve as “universal annotators,” generating examples from unlabeled data to train high-performance student models. Furthermore, LLMs possess remarkable reasoning capabilities, functioning as “universal reasoners” and accelerating causal discovery from real-world data at the population level. These models can also fact-check their own answers, providing easily verifiable rationale to enhance their accuracy and facilitate human-in-the-loop verification and interactive learning.

Beyond textual data, there is immense growth potential for LLMs in health applications, particularly when dealing with multimodal and longitudinal patient data. Crucial patient information may reside in various information-rich modalities, such as imaging and multi-omics. We have explored pretraining large biomedical multimodal models by assembling the largest collection of public biomedical image-text pairs from biomedical research articles, comprising 15 million images and over 30 million image-text pairs. Recently, we investigated using GPT-4 to generate instruction-following data to train a multimodal conversational copilot called LLaVA-Med, enabling researchers to interact with biomedical imaging data. Additionally, we are collaborating with clinical stakeholders to train LMMs for precision immuno-oncology, utilizing multimodal fusion to combine EMRs, radiology images, digital pathology, and multi-omics in longitudinal data on cancer patients.

Our ultimate aspiration is to develop precision health copilots that empower all stakeholders in biomedicine and scale real-world evidence generation, optimizing healthcare delivery and accelerating discoveries. We envision a future where clinical research and care are seamlessly integrated, where every clinical observation instantly updates a patient’s health status, and decisions are supported by population-level patient-like-me information. Patients in need of advanced intervention are continuously evaluated for just-in-time clinical trial matching. Life sciences researchers have access to a global real-world data dashboard in real time, initiating in silico trials to generate and test counterfactual hypotheses. Payors and regulators base approval and care decisions on the most comprehensive and up-to-date clinical evidence at the finest granular level. This vision embodies the dream of evidence-based precision health. Generative AI, including large language models, will play a pivotal role in propelling us towards this exciting and transformative future.

The post Microsoft at KDD 2023: Advancing health at the speed of AI appeared first on Microsoft Research.

Read More