Reachability Embeddings: Self-Supervised Representation Learning from Spatiotemporal Motion Trajectories for Multimodal Geospatial Computer Vision

Self-supervised representation learning techniques utilize large datasets without semantic annotations to learn meaningful, universal features that can be conveniently transferred to solve a wide variety of downstream supervised tasks. In this paper, we propose a self-supervised method for learning representations of geographic locations from unlabeled GPS trajectories to solve downstream geospatial computer vision tasks. Tiles resulting from a raster representation of the earth’s surface are modeled as nodes on a graph or pixels of an image. GPS trajectories are modeled as allowed Markovian…Apple Machine Learning Research