Training a Tokenizer for Free with Private Federated Learning

Federated learning with differential privacy, i.e. private federated learning (PFL), makes it possible to train models on private data distributed across users’ devices without harming privacy. PFL is efficient for models, such as neural networks, that have a fixed number of parameters, and thus a fixed-dimensional gradient vector. Such models include neural-net language models, but not tokenizers, the topic of this work. Training a tokenizer requires frequencies of words from an unlimited vocabulary, and existing methods for finding an unlimited vocabulary need a separate privacy budget.
A…Apple Machine Learning Research