MOFI: Learning Image Representation from Noisy Entity Annotated Images

In this paper, we introduce a novel approach to automatically assign entity labels to images from existing noisy image-text pairs. The approach employees a named entity recognition model to extract entities from text, and uses a CLIP model to select the right entities as the labels of the paired image. The approach is simple, and can be readily scaled up to billions of image-text pairs mined from the web, through which we have successfully created a dataset with 2 millions of distinct entities. We study new training approaches on the collected new dataset with large scale entity labels…Apple Machine Learning Research

How Far Are We from Intelligent Visual Deductive Reasoning?

This paper was accepted at the How Far Are We from AGI? workshop at ICLR 2024.
Vision-Language Models (VLMs) such as GPT-4V have recently demonstrated incredible strides on diverse vision language tasks. We dig into vision-based deductive reasoning, a more sophisticated but less explored realm, and find previously unexposed blindspots in the current SOTA VLMs. Specifically, we leverage Raven’s Progressive Matrices (RPMs), to assess VLMs’ abilities to perform multi-hop relational and deductive reasoning relying solely on visual clues. We perform comprehensive evaluations of several popular VLMs…Apple Machine Learning Research

Poly-View Contrastive Learning

Contrastive learning typically matches pairs of related views among a number of unrelated negative views.
Views can be generated (e.g. by augmentations) or be observed. We investigate matching when there are more than two related views which we call poly-view tasks, and derive new representation learning objectives using information maximization and sufficient statistics.
We show that with unlimited computation, one should maximize the number of related views, and with a fixed compute budget, it is beneficial to decrease the number of unique samples whilst increasing the number of views of…Apple Machine Learning Research

When can transformers reason with abstract symbols?

We investigate the capabilities of transformer models on relational reasoning tasks. In these tasks, models are trained on a set of strings encoding abstract relations, and are then tested out-of-distribution on data that contains symbols that did not appear in the training dataset. We prove that for any relational reasoning task in a large family of tasks, transformers learn the abstract relations and generalize to the test set when trained by gradient descent on sufficiently large quantities of training data. This is in contrast to classical fully-connected networks, which we prove fail to…Apple Machine Learning Research