Accelerate Mixtral 8x7B pre-training with expert parallelism on Amazon SageMaker

Accelerate Mixtral 8x7B pre-training with expert parallelism on Amazon SageMaker

Mixture of Experts (MoE) architectures for large language models (LLMs) have recently gained popularity due to their ability to increase model capacity and computational efficiency compared to fully dense models. By utilizing sparse expert subnetworks that process different subsets of tokens, MoE models can effectively increase the number of parameters while requiring less computation per token during training and inference. This enables more cost-effective training of larger models within fixed compute budgets compared to dense architectures.

Despite their computational benefits, training and fine-tuning large MoE models efficiently presents some challenges. MoE models can struggle with load balancing if the tokens aren’t evenly distributed across experts during training, and some experts may become overloaded while others are under-utilized. MoE models have high memory requirements, because all expert parameters need to be loaded into memory even though only a subset is used for each input.

In this post, we highlight new features of the Amazon SageMaker model parallelism library that enable efficient training of MoE models using expert parallelism. Expert parallelism is a type of parallelism that handles splitting experts of an MoE model across separate workers or devices, similar to how tensor parallelism can partition dense model layers. We demonstrate how to use these new features of SMP by pre-training the 47 billion parameter Mixtral 8x7B MoE model using expert parallelism. To learn more, refer to our GitHub repo and Expert parallelism.

Expert parallelism

The Mixtral 8x7B model has a sparse MoE architecture, containing eight expert subnetworks with around 7 billion parameters each. A trainable gate network called a router determines which input tokens are sent to which expert. With this architecture, the experts specialize in processing different aspects of the input data. The complete Mixtral 8x7B model has a total of 47 billion parameters, but only around 12.9 billion (two experts, for this model architecture) are activated for any given input token; this results in improved computational efficiency relative to a dense model of the same total size. To learn more about the MoE architecture in general, refer to Applying Mixture of Experts in LLM Architectures.

SMP adds support for expert parallelism

SMP now supports expert parallelism, which is essential to performant MoE model training. With expert parallelism, different expert subnetworks that comprise the MoE layers are placed on separate devices. During training, different data is routed to the different devices, with each device handling the computation for the experts it contains. By distributing experts across workers, expert parallelism addresses the high memory requirements of loading all experts on a single device and enables MoE training on a larger cluster. The following figure offers a simplified look at how expert parallelism works on a multi-GPU cluster.

The SMP library uses NVIDIA Megatron to implement expert parallelism and support training MoE models, and runs on top of PyTorch Fully Sharded Data Parallel (FSDP) APIs. You can keep using your PyTorch FSDP training code as is and activate SMP expert parallelism for training MoE models. SMP offers a simplified workflow where you need to specify the expert_parallel_degree parameter, which will evenly divide experts across the number of GPUs in your cluster. For example, to shard your model while using an instance with 8 GPUs, you can set the expert_parallel_degree to 2, 4, or 8. We recommend that you start with a small number and gradually increase it until the model fits in the GPU memory.

SMP’s expert parallelism is compatible with sharded data parallelism

SMP’s expert parallel implementation is compatible with sharded data parallelism, enabling more memory-efficient and faster training. To understand how this works, consider an MoE model in the following example with eight experts (N=8) training on a simple cluster with one node containing 4 GPUs.

SMP’s expert parallelism splits the MoE experts across GPUs. You control how many experts are instantiated on each device by using the expert_parallel_degree parameter. For example, if you set the degree to 2, SMP will assign half of the eight experts to each data parallel group. The degree value must be a factor of the number of GPUs in your cluster and the number of experts in your model. Data is dynamically routed to and from the GPU or GPUs hosting the selected expert using all-to-all GPU communication.

Next, sharded data parallelism partitions and distributes the experts as well as the non-MoE layers of the model, like attention or routers, across your cluster to reduce the memory footprint of the model. The hybrid_shard_degree parameter controls this. For example, a hybrid_shard_degree of 2 will shard the model states (including experts and non-MoE layers) across half of the GPUs in our cluster. The product of expert_parallel_degree and hybrid_shard_degree should not exceed the world size of the cluster. In the following example, hybrid_shard_degree * expert_parallel_degree = 4 is a valid configuration.

Solution overview

With the background out of the way, let’s dig into the components of our distributed training architecture. The following diagram illustrates the solution architecture.

In this example, we use SageMaker training jobs. With SageMaker training jobs, you can launch and manage clusters of high-performance instances with simple API calls. For example, you can use the SageMaker Estimator to specify the type and quantity of instances to use in your distributed systems with just a few lines of code. Later in this post, we use a cluster of two ml.p4d.24xlarge instances to train our model by specifying these parameters in our Estimator. To learn about SageMaker training jobs, see Train a Model with Amazon SageMaker.

In this post, we use the SMP library to efficiently distribute the workload across the cluster using hybrid sharded data parallelism and expert parallelism. In addition to these implementations, SMP offers many other performance-improving and memory-saving techniques, such as:

  • Mixed precision training and fp8 support for dense Llama models (which accelerates distributed training and takes advantage of the performance improvements on P5 instances)
  • Tensor parallelism composable with sharded data parallelism
  • Delayed parameter initialization
  • Activation checkpointing (a technique to reduce memory usage by clearing activations of certain layers and recomputing them during the backward pass)

For the latest updates, refer to SageMaker model parallelism library v2.

Along with SMP, this example also uses the SageMaker distributed data parallel library (SMDDP). As you scale your workload and add instances to your cluster, the overhead of communication between instances also increases, which can lead to a drop in overall computational performance and training efficiency. This is where SMDDP helps. SMDDP includes optimized communication collectives such as AllGather that are designed for AWS network infrastructure. Because of this, SMDDP can outperform other more general communications libraries such as NCCL when training on SageMaker.

Together, the SMP and SMDDP libraries can accelerate large distributed training workloads by up to 20%. Additionally, these libraries are compatible with standard PyTorch APIs and capabilities, which makes it convenient to adapt any existing PyTorch FSDP training script to the SageMaker training platform and take advantage of the performance improvements that SMP and SMDDP provide. To learn more, see SageMaker model parallelism library v2 and Run distributed training with the SageMaker distributed data parallelism library.

In the following sections, we showcase how you can accelerate distributed training of the Hugging Face Transformers Mixtral 8*7B model on P4 instances using SMP and SMDDP.

Prerequisites

You need to complete some prerequisites before you can run the Mixtral notebook.

First, make sure you have created a Hugging Face access token so you can download the Hugging Face tokenizer to be used later. After you have the access token, you need to make a few quota increase requests for SageMaker. You need to request a minimum of 2 P4d instances ranging to a maximum of 8 P4d instances (depending on time-to-train and cost-to-train trade-offs for your use case).

On the Service Quotas console, request the following SageMaker quotas:

  • P4 instances (ml.p4d.24xlarge) for training job usage: 2–8

It may take up to 24 hours for the quota increase to get approved.

Now that you’re ready to begin the process to pre-train the Mixtral model, we start with dataset preparation in the next step.

Prepare the dataset

We begin our tutorial with preparing the dataset. This will cover loading the GLUE/SST2 dataset, tokenizing and chunking the dataset, and configuring the data channels for SageMaker training on Amazon Simple Storage Service (Amazon S3). Complete the following steps:

  1. You first need to load the GLUE/SST2 dataset and split it into training and validation datasets:
    hyperparameters = {
        "cache_dir": "tmp",
        "dataset_config_name": "sst2",
        "dataset_name": "glue",
        "do_train": True,
        "do_eval": True,
    }
    
    raw_datasets = load_dataset(
        hyperparameters["dataset_name"],
        hyperparameters["dataset_config_name"],
    )
    
    del raw_datasets["validation"]
    
    if "validation" not in raw_datasets.keys():
        validation_percentage = "10%"
    
        raw_datasets["validation"] = load_dataset(
            hyperparameters["dataset_name"],
            hyperparameters["dataset_config_name"],
            split=f"train[:{validation_percentage}]",
            cache_dir=hyperparameters["cache_dir"],
        )
    
        raw_datasets["train"] = load_dataset(
            hyperparameters["dataset_name"],
            hyperparameters["dataset_config_name"],
            split=f"train[{validation_percentage}:]",
            cache_dir=hyperparameters["cache_dir"],
        )

  2. Load the Mixtral-8x7B tokenizer from the Hugging Face Transformers library:
    tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1", **tokenizer_kwargs)

Next, you define two utility functions: tokenize_function() and group_texts(). The tokenize_function() runs the tokenizer on the text data. The group_texts() function concatenates all texts from the dataset and generates chunks of a block size that corresponds to the model’s input length (2048) for this example. By chunking the text data into smaller pieces, you make sure the model can process the entire dataset during training, even if some text examples are longer than the input length (2048).

  1. Define the functions with the following code:
    def tokenize_function(examples):
        ...
        
        output = tokenizer(examples[text_column_name])
        return output
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
                for k, t in concatenated_examples.items()
            }
        result["labels"] = result["input_ids"].copy()
        return result

  2. Call the preceding utility functions on your dataset to tokenize and generate chunks suitable for the model:
    tokenized_datasets = raw_datasets.map(tokenize_function, batched=True,num_proc=1,remove_columns=column_names)
    lm_datasets = tokenized_datasets.map(group_texts, batched=True)

  3. Prepare the training and validation datasets for SageMaker training by saving them as JSON files and constructing the S3 paths where these files will be uploaded:
    train_dataset = lm_datasets["train"]
    train_dataset.to_json("./training.json")
    training_dataset_location = f"s3://{default_bucket}/dataset/train/"
    
     
    eval_dataset = lm_datasets["validation"]
    eval_dataset.to_json("./validation.json")
    validation_dataset_location = f"s3://{default_bucket}/dataset/validation/"

  4. Finally, set up the data channels for SageMaker training by creating TrainingInput objects from the provided S3 bucket paths for the training and test/validation datasets:
    train = sagemaker.inputs.TrainingInput(
                s3_train_bucket, distribution="FullyReplicated", 
                s3_data_type="S3Prefix"
            )
    data_channels = {"train": train}
    
    test = sagemaker.inputs.TrainingInput(
                s3_test_bucket, distribution="FullyReplicated", 
                s3_data_type="S3Prefix"
            )
    data_channels["test"] = test

You’re now ready to run pre-training or fine-tuning on the dataset.

Pre-train Mixtral 8x7B with expert parallelism on SMP

To pre-train the Mixtral 8x7B model, complete the following steps:

  1. Initialize the script with torch.sagemaker.init() to activate the SMP library:
    import torch.sagemaker as tsm
    tsm.init()

  2. Import the MoEConfig class from the torch.sagemaker.transform API. We use the MoEConfig class to enable the model to use the SMP implementation of MoE:
    from torch.sagemaker.moe.moe_config import MoEConfig

  3. Create a model configuration for Mixtral 8x7B model. This will be passed to AutoModelForCausalLM.from_config(model_config, attn_implementation="flash_attention_2") from the Hugging Face Transformers library to initialize the model with random weights. If you want to fine-tune, you can provide the path to the pre-trained weights instead of the model configuration.
    model_config = MixtralConfig(
                vocab_size=args.vocab_size, # 32000,
                hidden_size=args.hidden_width, # 4096,
                intermediate_size=args.intermediate_size, # 14336,
                num_hidden_layers=args.num_layers, # 32,
                num_attention_heads=args.num_heads, # 32,
                num_key_value_heads=args.num_key_value_heads, # 8,
                hidden_act="silu",
                max_position_embeddings=args.max_context_width, # 4096 * 32,
                initializer_range=args.initializer_range, # 0.02,
                rms_norm_eps=1e-5,
                use_cache=False,
                pad_token_id=None,
                bos_token_id=1,
                eos_token_id=2,
                tie_word_embeddings=False,
                rope_theta=1e6,
                sliding_window=args.sliding_window, # None,
                attention_dropout=0.0,
                num_experts_per_tok=args.num_experts_per_tok, # 2,
                num_local_experts=args.num_local_experts, # 8,
                output_router_logits=False,
                router_aux_loss_coef=0.001,
            )
           
    model = AutoModelForCausalLM.from_config(model_config, dtype=dtype, attn_implementation="flash_attention_2" )

In the example Jupyter Notebook, you use a create_model() function that invokes the AutoModelForCausalLM.from_config() function.

  1. Create the SMP MoE configuration class. In the following code, you specify parameters in the training estimator in the subsequent steps. To learn more about the SMP MoEConfig class, see torch.sagemaker.moe.moe_config.MoEConfig.
    moe_config = MoEConfig(
                        smp_moe=args.use_smp_implementation > 0, #Whether to use the SMP-implementation of MoE. The default value is True.
                        random_seed=args.seed, # A seed number for the random operations in expert-parallel distributed modules. This seed will be added to the expert parallel rank to set the actual seed for each rank. It is unique for each expert parallel rank. The default value is 12345.
                        moe_load_balancing=args.moe_load_balancing, #Specify the load balancing type of the MoE router. Valid options are aux_loss, sinkhorn, balanced, and none. The default value is sinkhorn.
                        global_token_shuffle=args.global_token_shuffle > 0,  #Whether to shuffle tokens across EP ranks within the same expert parallel group. The default value is False
                        moe_all_to_all_dispatcher=args.moe_all_to_all_dispatcher > 0, #Whether to use all-to-all dispatcher for the communications in MoE. The default value is True.
                    )

  2. With the model and MoE configuration ready, you wrap the model with the SMP transform API and pass the MoE configuration. Here, the tsm.transform method adapts the model from Hugging Face format to SMP format. For more information, refer to torch.sagemaker.transform.
    model = tsm.transform(
            model, 
            config=moe_config,
        )

  3. Define the training hyperparameters, including the MoE configuration and other settings specific to the model and training setup:
    hyperparameters = {
        # MoE config
        "moe": 1,
        "moe_load_balancing": "sinkhorn",
        "moe_all_to_all_dispatcher": 1,
        "seed": 12345,
        #rest of hyperparameters
        ...
        "model_type": "mixtral",
        "sharding_strategy": "hybrid_shard",
        "delayed_param": 1, 
        "epochs": 100,
        "activation_checkpointing": 1,
        "beta1": 0.9,
        "bf16": 1,
        "fp8": 0,
        "checkpoint_dir": "/opt/ml/checkpoints",
        ...
        ...
        
    }

We enable delayed parameter initialization in SMP, which allows initializing large models on a meta device without attaching data. This can resolve limited GPU memory issues when you first load the model. This approach is particularly useful for training LLMs with tens of billions of parameters, where even CPU memory might not be sufficient for initialization.

SMP supports various routing strategies, including sinkhorn, balanced, and aux_loss. Each provides distinct load balancing approaches to achieve equitable token assignment among experts, thereby maintaining balanced workload distribution.

  1. Specify the parameters for expert_parallel_degree and hybrid_shard_degree:
    expert_parallel_degree = 2  # An integer in [1, world_size]
    hybrid_shard_degree = (
        8  # An integer in [0, world_size // expert_parallel_degree] and its default value is 0.
    )

Hybrid sharding is a memory saving technique between `FULL_SHARD` and `NO_SHARD`, with `FULL_SHARD` saving the most memory and `NO_SHARD` not saving any. This technique shards parameters within the hybrid shard degree (HSD) group and replicates parameters across groups. The HSD controls sharding across GPUs and can be set to an integer from 0 to `world_size`.

An HSD of 8 applies `FULL_SHARD` within a node and then replicates parameters across nodes because there are 8 GPUs in the nodes we are using. This results in reduced communication volume because expensive all-gathers and reduce-scatters are only done within a node, which can be more performant for medium-sized models. Generally, you want to use the smallest HSD that doesn’t cause out of memory (OOM) errors. If you’re experiencing OOM, try increasing the hybrid shard degree to reduce memory usage on each node.

  1. With all the necessary configurations in place, you now create the PyTorch estimator function to encapsulate the training setup and launch the training job. We run the pre-training on the 2 ml.p4d.24xlarge instances, where each instance contains 8 A100 Nvidia GPUs:
    smp_estimator = PyTorch(
        entry_point="train.py",
        hyperparameters=hyperparameters,
        role=role,
        checkpoint_s3_uri=checkpoint_s3_uri,
        checkpoint_local_path=hyperparameters["checkpoint_dir"] 
        instance_type="ml.p4d.24xlarge",
        volume_size=400,
        instance_count=2,
        sagemaker_session=sagemaker_session,
        ...
        distribution={
            "torch_distributed": {
                "enabled": True,
            },
            "smdistributed": {
                "modelparallel": {
                    "enabled": True,
                    "parameters": {
                        "activation_loading_horizon": activation_loading_horizon,
                        "hybrid_shard_degree": hybrid_shard_degree,
                        "sm_activation_offloading": offload_activations,
                        "expert_parallel_degree": expert_parallel_degree,
                    },
                }
            },
        },
        py_version="py310",
        framework_version="2.2.0",
        output_path=s3_output_bucket,
    )

  2. Finally, launch the pre-training workload:
    smp_estimator.fit(inputs=data_channels)

Clean up

As part of cleanup, you can delete the SageMaker default bucket created to host the GLUE/SST2 dataset.

Conclusion

Training large MoE language models like the 47 billion parameter Mistral 8x7B can be challenging due to high computational and memory requirements. By using expert parallelism and sharded data parallelism from the SageMaker model parallelism library, you can effectively scale these MoE architectures across multiple GPUs and workers.

SMP’s expert parallelism implementation seamlessly integrates with PyTorch and the Hugging Face Transformers library, allowing you to enable MoE training using simple configuration flags without changing your existing model code. Additionally, SMP provides performance optimizations like hybrid sharding, delayed parameter initialization, and activation offloading and recomputation to further improve training efficiency.

For the complete sample to pre-train and fine-tune Mixtral 8x7B, see the GitHub repo.

Special thanks

Special thanks to Rahul Huilgol, Gautam Kumar, and Luis Quintela for their guidance and engineering leadership in developing this new capability.


About the Authors

Roy Allela is a Senior AI/ML Specialist Solutions Architect at AWS based in Munich, Germany. Roy helps AWS customers—from small startups to large enterprises—train and deploy large language models efficiently on AWS. Roy is passionate about computational optimization problems and improving the performance of AI workloads.

Kanwaljit Khurmi is a Principal Solutions Architect at Amazon Web Services. He works with AWS customers to provide guidance and technical assistance, helping them improve the value of their solutions when using AWS. Kanwaljit specializes in helping customers with containerized and machine learning applications.

Robert Van Dusen is a Senior Product Manager with Amazon SageMaker. He leads frameworks, compilers, and optimization techniques for deep learning training.

Teng Xu is a Software Development Engineer in the Distributed Training group in AWS AI. He enjoys reading.

Suhit Kodgule is a Software Development Engineer with the AWS Artificial Intelligence group working on deep learning frameworks. In his spare time, he enjoys hiking, traveling, and cooking.

Read More

Generating fashion product descriptions by fine-tuning a vision-language model with SageMaker and Amazon Bedrock

Generating fashion product descriptions by fine-tuning a vision-language model with SageMaker and Amazon Bedrock

In the world of online retail, creating high-quality product descriptions for millions of products is a crucial, but time-consuming task. Using machine learning (ML) and natural language processing (NLP) to automate product description generation has the potential to save manual effort and transform the way ecommerce platforms operate. One of the main advantages of high-quality product descriptions is the improvement in searchability. Customers can more easily locate products that have correct descriptions, because it allows the search engine to identify products that match not just the general category but also the specific attributes mentioned in the product description. For example, a product that has a description that includes words such as “long sleeve” and “cotton neck” will be returned if a consumer is looking for a “long sleeve cotton shirt.” Furthermore, having factoid product descriptions can increase customer satisfaction by enabling a more personalized buying experience and improving the algorithms for recommending more relevant products to users, which raise the probability that users will make a purchase.

With the advancement of Generative AI, we can use vision-language models (VLMs) to predict product attributes directly from images. Pre-trained image captioning or visual question answering (VQA) models perform well on describing every-day images but can’t to capture the domain-specific nuances of ecommerce products needed to achieve satisfactory performance in all product categories. To solve this problem, this post shows you how to predict domain-specific product attributes from product images by fine-tuning a VLM on a fashion dataset using Amazon SageMaker, and then using Amazon Bedrock to generate product descriptions using the predicted attributes as input. So you can follow along, we’re sharing the code in a GitHub repository.

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon through a single API, along with a broad set of capabilities you need to build generative AI applications with security, privacy, and responsible AI.

You can use a managed service, such as Amazon Rekognition, to predict product attributes as explained in Automating product description generation with Amazon Bedrock. However, if you’re trying to extract specifics and detailed characteristics of your product or your domain (industry), fine-tuning a VLM on Amazon SageMaker is necessary.

Vision-language models

Since 2021, there has been a rise in interest in vision-language models (VLMs), which led to the release of solutions such as Contrastive Language-Image Pre-training (CLIP) and Bootstrapping Language-Image Pre-training (BLIP). When it comes to tasks such as image captioning, text-guided image generation, and visual question-answering, VLMs have demonstrated state-of-the art performance.

In this post, we use BLIP-2, which was introduced in BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models, as our VLM. BLIP-2 consists of three models: a CLIP-like image encoder, a Querying Transformer (Q-Former) and a large language model (LLM). We use a version of BLIP-2, that contains Flan-T5-XL as the LLM.

The following diagram illustrates the overview of BLIP-2:

Blip-2 architecture

Figure 1: BLIP-2 overview

The pre-trained version of the BLIP-2 model has been demonstrated in Build an image-to-text generative AI application using multimodality models on Amazon SageMaker and Build a generative AI-based content moderation solution on Amazon SageMaker JumpStart. In this post, we demonstrate how to fine-tune BLIP-2 for a domain-specific use case.

Solution overview

The following diagram illustrates the solution architecture.

Solution architecture

Figure 2: High-level solution architecture

The high-level overview of the solution is:

  • An ML scientist uses Sagemaker notebooks to process and split the data into training and validation data.
  • The datasets are uploaded to Amazon Simple Storage Service (Amazon S3) using the S3 client (a wrapper around an HTTP call).
  • Then the Sagemaker client is used to launch a Sagemaker Training job, again a wrapper for an HTTP call.
  • The training job manages the copying of the datasets from S3 to the training container, the training of the model, and the saving of its artifacts to S3.
  • Then, through another call of the Sagemaker client, an endpoint is generated, copying the model artifacts into the endpoint hosting container.
  • The inference workflow is then invoked through an AWS Lambda request, which first makes an HTTP request to the Sagemaker endpoint, and then uses that to make another request to Amazon Bedrock.

In the following sections, we demonstrate how to:

  • Set up the development environment
  • Load and prepare the dataset
  • Fine-tune the BLIP-2 model to learn product attributes using SageMaker
  • Deploy the fine-tuned BLIP-2 model and predict product attributes using SageMaker
  • Generate product descriptions from predicted product attributes using Amazon Bedrock

Set up the development environment

An AWS account is needed with an AWS Identity and Access Management (IAM) role that has permissions to manage resources created as part of the solution. For details, see Creating an AWS account.

We use Amazon SageMaker Studio with the ml.t3.medium instance and the Data Science 3.0 image. However, you can also use an Amazon SageMaker notebook instance or any integrated development environment (IDE) of your choice.

Note: Be sure to set up your AWS Command Line Interface (AWS CLI) credentials correctly. For more information, see Configure the AWS CLI.

An ml.g5.2xlarge instance is used for SageMaker Training jobs, and an ml.g5.2xlarge instance is used for SageMaker endpoints. Ensure sufficient capacity for this instance in your AWS account by requesting a quota increase if required. Also check the pricing of the on-demand instances.

You need to clone this GitHub repository for replicating the solution demonstrated in this post. First, launch the notebook main.ipynb in SageMaker Studio by selecting the Image as Data Science and Kernel as Python 3. Install all the required libraries mentioned in the requirements.txt.

Load and prepare the dataset

For this post, we use the Kaggle Fashion Images Dataset, which contain 44,000 products with multiple category labels, descriptions, and high resolution images. In this post we want to demonstrate how to fine-tune a model to learn attributes such as fabric, fit, collar, pattern, and sleeve length of a shirt using the image and a question as inputs.

Each product is identified by an ID such as 38642, and there is a map to all the products in styles.csv. From here, we can fetch the image for this product from images/38642.jpg and the complete metadata from styles/38642.json. To fine-tune our model, we need to convert our structured examples into a collection of question and answer pairs. Our final dataset has the following format after processing for each attribute:

Id | Question | Answer
38642 | What is the fabric of the clothing in this picture? | Fabric: Cotton

After we process the dataset, we split it into training and validation sets, create CSV files, and upload the dataset to Amazon S3.

Fine-tune the BLIP-2 model to learn product attributes using SageMaker

To launch a SageMaker Training job, we need the HuggingFace Estimator. SageMaker starts and manages all of the necessary Amazon Elastic Compute Cloud (Amazon EC2) instances for us, supplies the appropriate Hugging Face container, uploads the specified scripts, and downloads data from our S3 bucket to the container to /opt/ml/input/data.

We fine-tune BLIP-2 using the Low-Rank Adaptation (LoRA) technique, which adds trainable rank decomposition matrices to every Transformer structure layer while keeping the pre-trained model weights in a static state. This technique can increase training throughput and reduce the amount of GPU RAM required by 3 times and the number of trainable parameters by 10,000 times. Despite using fewer trainable parameters, LoRA has been demonstrated to perform as well as or better than the full fine-tuning technique.

We prepared entrypoint_vqa_finetuning.py which implements fine-tuning of BLIP-2 with the LoRA technique using Hugging Face Transformers, Accelerate, and Parameter-Efficient Fine-Tuning (PEFT). The script also merges the LoRA weights into the model weights after training. As a result, you can deploy the model as a normal model without any additional code.

from peft import LoraConfig, get_peft_model
from transformers import Blip2ForConditionalGeneration
 
model = Blip2ForConditionalGeneration.from_pretrained(
        "Salesforce/blip2-flan-t5-xl",
        device_map="auto",
        cache_dir="/tmp",
        load_in_8bit=True,
    )

config = LoraConfig(
    r=8, # Lora attention dimension.
    lora_alpha=32, # the alpha parameter for Lora scaling.
    lora_dropout=0.05, # the dropout probability for Lora layers.
    bias="none", # the bias type for Lora.
    target_modules=["q", "v"],
)

model = get_peft_model(model, config)

We reference entrypoint_vqa_finetuning.py as the entry_point in the Hugging Face Estimator.

from sagemaker.huggingface import HuggingFace

hyperparameters = {
    'epochs': 10,
    'file-name': "vqa_train.csv",
}

estimator = HuggingFace(
    entry_point="entrypoint_vqa_finetuning.py",
    source_dir="../src",
    role=role,
    instance_count=1,
    instance_type="ml.g5.2xlarge", 
    transformers_version='4.26',
    pytorch_version='1.13',
    py_version='py39',
    hyperparameters = hyperparameters,
    base_job_name="VQA",
    sagemaker_session=sagemaker_session,
    output_path=f"{output_path}/models",
    code_location=f"{output_path}/code",
    volume_size=60,
    metric_definitions=[
        {'Name': 'batch_loss', 'Regex': 'Loss: ([0-9\.]+)'},
        {'Name': 'epoch_loss', 'Regex': 'Epoch Loss: ([0-9\.]+)'}
    ],
)

We can start our training job by running with the .fit() method and passing our Amazon S3 path for images and our input file.

estimator.fit({"images": images_input, "input_file": input_file})

Deploy the fine-tuned BLIP-2 model and predict product attributes using SageMaker

We deploy the fine-tuned BLIP-2 model to the SageMaker real time endpoint using the HuggingFace Inference Container. You can also use the large model inference (LMI) container, which is described in more detail in Build a generative AI-based content moderation solution on Amazon SageMaker JumpStart, which deploys a pre-trained BLIP-2 model. Here, we reference our fine-tuned model in Amazon S3 instead of the pre-trained model available in the Hugging Face hub. We first create the model and deploy the endpoint.

from sagemaker.huggingface import HuggingFaceModel

model = HuggingFaceModel(
   model_data=estimator.model_data,
   role=role,
   transformers_version="4.28",
   pytorch_version="2.0",
   py_version="py310",
   model_server_workers=1,
   sagemaker_session=sagemaker_session
)

endpoint_name = "endpoint-finetuned-blip2"
model.deploy(initial_instance_count=1, instance_type="ml.g5.2xlarge", endpoint_name=endpoint_name )

When the endpoint status becomes in service, we can invoke the endpoint for the instructed vision-to-language generation task with an input image and a question as a prompt:

inputs = {
    "prompt": "What is the sleeve length of the shirt in this picture?",
    "image": image # image encoded in Base64
}

The output response looks like the following:

{"Sleeve Length": "Long Sleeves"}

Generate product descriptions from predicted product attributes using Amazon Bedrock

To get started with Amazon Bedrock, request access to the foundational models (they are not enabled by default). You can follow the steps in the documentation to enable model access. In this post, we use Anthropic’s Claude in Amazon Bedrock to generate product descriptions. Specifically, we use the model anthropic.claude-3-sonnet-20240229-v1 because it provides good performance and speed.

After creating the boto3 client for Amazon Bedrock, we create a prompt string that specifies that we want to generate product descriptions using the product attributes.

You are an expert in writing product descriptions for shirts. Use the data below to create product description for a website. The product description should contain all given attributes.
Provide some inspirational sentences, for example, how the fabric moves. Think about what a potential customer wants to know about the shirts. Here are the facts you need to create the product descriptions:
[Here we insert the predicted attributes by the BLIP-2 model]

The prompt and model parameters, including maximum number of tokens used in the response and the temperature, are passed to the body. The JSON response must be parsed before the resulting text is printed in the final line.

bedrock = boto3.client(service_name='bedrock-runtime', region_name='us-west-2')

model_id = "anthropic.claude-3-sonnet-20240229-v1"

body = json.dumps(
    {"system": prompt, "messages": attributes_content, "max_tokens": 400, "temperature": 0.1, "anthropic_version": "bedrock-2023-05-31"}
)

response = bedrock.invoke_model(
    body=body,
    modelId=model_id,
    accept='application/json',
    contentType='application/json'
)

The generated product description response looks like the following:

"Classic Striped Shirt Relax into comfortable casual style with this classic collared striped shirt. With a regular fit that is neither too slim nor too loose, this versatile top layers perfectly under sweaters or jackets."

Conclusion

We’ve shown you how the combination of VLMs on SageMaker and LLMs on Amazon Bedrock present a powerful solution for automating fashion product description generation. By fine-tuning the BLIP-2 model on a fashion dataset using Amazon SageMaker, you can predict domain-specific and nuanced product attributes directly from images. Then, using the capabilities of Amazon Bedrock, you can generate product descriptions from the predicted product attributes, enhancing the searchability and personalization of ecommerce platforms. As we continue to explore the potential of generative AI, LLMs and VLMs emerge as a promising avenue for revolutionizing content generation in the ever-evolving landscape of online retail. As a next step, you can try fine-tuning this model on your own dataset using the code provided in the GitHub repository to test and benchmark the results for your use cases.


About the Authors 

antoniaAntonia Wiebeler is a Data Scientist at the AWS Generative AI Innovation Center, where she enjoys building proofs of concept for customers. Her passion is exploring how generative AI can solve real-world problems and create value for customers. While she is not coding, she enjoys running and competing in triathlons.

danielDaniel Zagyva is a Data Scientist at AWS Professional Services. He specializes in developing scalable, production-grade machine learning solutions for AWS customers. His experience extends across different areas, including natural language processing, generative AI, and machine learning operations.

lunLun Yeh is a Machine Learning Engineer at AWS Professional Services. She specializes in NLP, forecasting, MLOps, and generative AI and helps customers adopt machine learning in their businesses. She graduated from TU Delft with a degree in Data Science & Technology.

fotinosFotinos Kyriakides is an AI/ML Consultant at AWS Professional Services specializing in developing production-ready ML solutions and platforms for AWS customers. In his free time Fotinos enjoys running and exploring.

Read More

Create a multimodal assistant with advanced RAG and Amazon Bedrock

Create a multimodal assistant with advanced RAG and Amazon Bedrock

Retrieval Augmented Generation (RAG) models have emerged as a promising approach to enhance the capabilities of language models by incorporating external knowledge from large text corpora. However, despite their impressive performance in various natural language processing tasks, RAG models still face several limitations that need to be addressed.

Naive RAG models face limitations such as missing content, reasoning mismatch, and challenges in handling multimodal data. Although they can retrieve relevant information, they may struggle to generate complete and coherent responses when required information is absent, leading to incomplete or inaccurate outputs. Additionally, even with relevant information retrieved, the models may have difficulty correctly interpreting and reasoning over the content, resulting in inconsistencies or logical errors. Furthermore, effectively understanding and reasoning over multimodal data remains a significant challenge for these primarily text-based models.

In this post, we present a new approach named multimodal RAG (mmRAG) to tackle those existing limitations in greater detail. The solution intends to address these limitations for practical generative artificial intelligence (AI) assistant use cases. Additionally, we examine potential solutions to enhance the capabilities of large language models (LLMs) and visual language models (VLMs) with advanced LangChain capabilities, enabling them to generate more comprehensive, coherent, and accurate outputs while effectively handling multimodal data. The solution uses Amazon Bedrock, a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies, providing a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

Solution architecture

The mmRAG solution is based on a straightforward concept: to extract different data types separately, you generate text summarization using a VLM from different data types, embed text summaries along with raw data accordingly to a vector database, and store raw unstructured data in a document store. The query will prompt the LLM to retrieve relevant vectors from both the vector database and document store and generate meaningful and accurate answers.

The following diagram illustrates the solution architecture.

The architecture diagram depicts the mmRAG architecture that integrates advanced reasoning and retrieval mechanisms. It combines text, table, and image (including chart) data into a unified vector representation, enabling cross-modal understanding and retrieval. The process begins with diverse data extractions from various sources such as URLs and PDF files by parsing and preprocessing text, table, and image data types separately, while table data is converted into raw text and image data into captions.

These parsed data streams are then fed into a multimodal embedding model, which encodes the various data types into uniform, high dimensional vectors. The resulting vectors, representing the semantic content regardless of original format, are indexed in a vector database for efficient approximate similarity searches. When a query is received, the reasoning and retrieval component performs similarity searches across this vector space to retrieve the most relevant information from the vast integrated knowledge base.

The retrieved multimodal representations are then used by the generation component to produce outputs such as text, images, or other modalities. The VLM component generates vector representations specifically for textual data, further enhancing the system’s language understanding capabilities. Overall, this architecture facilitates advanced cross-modal reasoning, retrieval, and generation by unifying different data modalities into a common semantic space.

Developers can access mmRAG source codes on the GitHub repo.

Configure Amazon Bedrock with LangChain

You start by configuring Amazon Bedrock to integrate with various components from the LangChain Community library. This allows you to work with the core FMs. You use the BedrockEmbeddings class to create two different embedding models: one for text (embedding_bedrock_text) and one for images (embeddings_bedrock_image). These embeddings represent textual and visual data in a numerical format, which is essential for various natural language processing (NLP) tasks.

Additionally, you use the LangChain Bedrock and BedrockChat classes to create a VLM model instance (llm_bedrock_claude3_haiku) from Anthropic Claude 3 Haiku and a chat instance based on a different model, Sonnet (chat_bedrock_claude3_sonnet). These instances are used for advanced query reasoning, argumentation, and retrieval tasks. See the following code snippet:

from langchain_community.embeddings import BedrockEmbeddings
from langchain_community.chat_models.bedrock import BedrockChat

embedding_bedrock_text = BedrockEmbeddings(client=boto3_bedrock, model_id="amazon.titan-embed-g1-text-02")
embeddings_bedrock_image = BedrockEmbeddings(client=boto3_bedrock, model_id="amazon.titan-embed-image-v1")

model_kwargs =  { 
    "max_tokens": 2048,
    "temperature": 0.0,
    "top_k": 250,
    "top_p": 1,
    "stop_sequences": ["nnn"],
}
chat_bedrock_claude3_haiku = BedrockChat(
        model_id="anthropic:claude-3-haiku-20240307-v1:0", 
        client=boto3_bedrock,
        model_kwargs=model_kwargs,
    )
 
chat_bedrock_claude3_sonnet = BedrockChat(
        model_id="anthropic.claude-3-sonnet-20240229-v1:0", 
        client=boto3_bedrock,
        model_kwargs=model_kwargs,
    )

Parse content from data sources and embed both text and image data

In this section, we explore how to harness the power of Python to parse text, tables, and images from URLs and PDFs efficiently, using two powerful packages: Beautiful Soup and PyMuPDF. Beautiful Soup, a library designed for web scraping, makes it straightforward to sift through HTML and XML content, allowing you to extract the desired data from web pages. PyMuPDF offers an extensive set of functionalities for interacting with PDF files, enabling you to extract not just text but also tables and images with ease. See the following code:

from bs4 import BeautifulSoup as Soup
import fitz

def parse_tables_images_from_urls(url:str):
    ...
     # Parse the HTML content using BeautifulSoup
    soup = Soup(response.content, 'html.parser')

    # Find all table elements
    tables = soup.find_all('table')
    # Find all image elements
    images = soup.find_all('img')
    ...
 
def parse_images_tables_from_pdf(pdf_path:str):
    ...
    pdf_file = fitz.open(pdf_path)

    # Iterate through each page
    for page_index in range(len(pdf_file)): 
        # Select the page
        page = pdf_file[page_index]

        # Search for tables on the page
        tables = page.find_tables()
        df = table.to_pandas()
        
        # Search for images on the page
        images = page.get_images()
        image_info = pdf_file.extract_image(xref)
        image_data = image_info["image"]
       ...

The following code snippets demonstrate how to generate image captions using Anthropic Claude 3 by invoking the bedrock_get_img_description utility function. Additionally, they showcase how to embed image pixels along with image captioning using the Amazon Titan image embedding model amazon.titan_embeding_image_v1 by calling the get_text_embedding function.

image_caption = bedrock_get_img_description(model_id, 
            prompt='You are an expert at analyzing images in great detail. Your task is to carefully examine the provided 
                    mage and generate a detailed, accurate textual description capturing all of the important elements and 
                    context present in the image. Pay close attention to any numbers, data, or quantitative information visible, 
                    and be sure to include those numerical values along with their semantic meaning in your description. 
                    Thoroughly read and interpret the entire image before providing your detailed caption describing the 
                    image content in text format. Strive for a truthful and precise representation of what is depicted',
            image=image_byteio, 
            max_token=max_token, 
            temperature=temperature, 
            top_p=top_p, 
            top_k=top_k, 
            stop_sequences='Human:')    
            
image_sum_vectors = get_text_embedding(image_base64=image_base64, text_description=image_caption,  embd_model_id=embd_model_id)        

Embedding and vectorizing multimodality data

You can harness the capabilities of the newly released Anthropic Claude 3 Sonnet and Haiku on Amazon Bedrock, combined with the Amazon Titan image embedding model and LangChain. This powerful combination allows you to generate comprehensive text captions for tables and images, seamlessly integrating them into your content. Additionally, you can store vectors, objects, raw image file names, and source documents in an Amazon OpenSearch Serverless vector store and object store. Use the following code snippets to create image captions by invoking the utility function bedrock_get_img_description. Embed image pixels along with image captions using the Amazon Titan image embedding model amazon.titan_embeding_image_v1 by calling the get_text_embedding functions.

def get_text_embedding(image_base64=None, text_description=None,  embd_model_id:str="amazon.titan-embed-image-v1"):
    input_data = {}
    if image_base64 is not None:
        input_data["inputImage"] = image_base64
    if text_description is not None:
        input_data["inputText"] = text_description
    if not input_data:
        raise ValueError("At least one of image_base64 or text_description must be provided")
    body = json.dumps(input_data)
    response = boto3_bedrock.invoke_model(
        body=body,
        modelId=embd_model_id,
        accept="application/json",
        contentType="application/json"
    )
    response_body = json.loads(response.get("body").read())
    return response_body.get("embedding")
    
image_caption = bedrock_get_img_description(model_id, 
            prompt='You are an expert at analyzing images in great detail. Your task is to carefully examine the provided 
                    mage and generate a detailed, accurate textual description capturing all of the important elements and 
                    context present in the image. Pay close attention to any numbers, data, or quantitative information visible, 
                    and be sure to include those numerical values along with their semantic meaning in your description. 
                    Thoroughly read and interpret the entire image before providing your detailed caption describing the 
                    image content in text format. Strive for a truthful and precise representation of what is depicted',
            image=image_byteio, 
            max_token=max_token, 
            temperature=temperature, 
            top_p=top_p, 
            top_k=top_k, 
            stop_sequences='Human:')    
            
image_sum_vectors = get_text_embedding(image_base64=image_base64, text_description=image_sum,  embd_model_id=embd_model_id) 

You can consult the provided code examples for more information on how to embed multimodal and insert vector documents into the OpenSearch Serverless vector store. For more information about data access, refer to Data access control for Amazon OpenSearch Serverless.

# Form a data dictionary with image metatadata, raw image object store location and base64 encoded image data
document = {
    "doc_source": image_url,
    "image_filename": s3_image_path,
    "embedding": image_base64
}
# Parse out only the iamge name from the full temp path
filename = f"jsons/{image_path.split('/')[-1].split('.')[0]}.json"

# Writing the data dict into JSON data
with open(filename, 'w') as file:
    json.dump(document, file, indent=4)

#Load all json files from the temp directory  
loader = DirectoryLoader("./jsons", glob='**/*.json', show_progress=False, loader_cls=TextLoader)

#loader = DirectoryLoader("./jsons", glob='**/*.json', show_progress=True, loader_cls=JSONLoader, loader_kwargs = {'jq_schema':'.content'})
new_documents = loader.load()
new_docs = text_splitter.split_documents(new_documents)
   
# Insert into AOSS
new_docsearch = OpenSearchVectorSearch.from_documents(
    new_docs,
    bedrock_embeddings,
    opensearch_url=host,
    http_auth=auth,
    timeout = 100,
    use_ssl = True,
    verify_certs = True,
    connection_class = RequestsHttpConnection,
    index_name=new_index_name,
    engine="faiss",
)

Advanced RAG with fusion and decomposition

Fusion in RAG presents an innovative search strategy designed to transcend the limitations of conventional search techniques, aligning more closely with the complex nature of human inquiries. This initiative elevates the search experience by integrating multi-faceted query generation and using Reciprocal Rank Fusion for an enhanced re-ranking of search outcomes. This approach offers a more nuanced and effective way to navigate the vast expanse of available information, catering to the intricate and varied demands of users’ searches.

The following diagram illustrates this workflow.

We use the Anthropic Claude 3 Sonnet and Haiku models, which possess the capability to process visual and language data, which enables them to handle the query decomposition (Haiku) and answer fusion (Sonnet) stages effectively. The following code snippet demonstrates how to create a retriever using OpenSearch Serverless:

from langchain.vectorstores import OpenSearchVectorSearch
retriever  =  OpenSearchVectorSearch(
    opensearch_url = "{}.{}.aoss.amazonaws.com".format(<collection_id>, <my_region>),
    index_name = <index_name>,
    embedding_function = embd)

The combination of decomposition and fusion intend to address the limitations of the chain-of-thought (CoT) method in language models. It involves breaking down complex problems into simpler, sequential sub-problems, where each sub-problem builds upon the solution of the previous one. This technique significantly enhances the problem-solving abilities of language models in areas such as symbolic manipulation, compositional generalization, and mathematical reasoning.

The RAG-decomposition approach, which uses the decomposition step (see the following code), underscores the potential of a technique called least-to-most prompting. This technique not only improves upon existing methods but also paves the way for more advanced, interactive learning frameworks for language models. The ultimate goal is to move towards a future where language models can learn from bidirectional conversations, enabling more effective reasoning and problem-solving capabilities.

# Decomposition
prompt_rag = hub.pull("rlm/rag-prompt")
template = """You are a helpful assistant that generates multiple sub-questions related to an input question. n
The goal is to break down the input into a set of sub-problems / sub-questions that can be answers in isolation. n
Generate multiple search queries semantically related to: {question} n
Output (5 queries):"""
prompt_decomposition = ChatPromptTemplate.from_template(template)
generate_queries_decomposition = ( prompt_decomposition | llm_bedrock | StrOutputParser() | (lambda x: x.split("n")))
questions = generate_queries_decomposition.invoke({"question":question})

def reciprocal_rank_fusion(results: list[list], k=60):

    # Initialize a dictionary to hold fused scores for each unique document
    fused_scores = {}

    # Iterate through each list of ranked documents
    for docs in results:
        # Iterate through each document in the list, with its rank (position in the list)
        for rank, doc in enumerate(docs):
            # Convert the document to a string format to use as a key (assumes documents can be serialized to JSON)
            doc_str = dumps(doc)
            # If the document is not yet in the fused_scores dictionary, add it with an initial score of 0
            if doc_str not in fused_scores:
                fused_scores[doc_str] = 0
            # Retrieve the current score of the document, if any
            previous_score = fused_scores[doc_str]
            # Update the score of the document using the RRF formula: 1 / (rank + k)
            fused_scores[doc_str] += 1 / (rank + k)
    # Sort the documents based on their fused scores in descending order to get the final reranked results
    reranked_results = [
        (loads(doc), score)
        for doc, score in sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)
    ]
    # Return the reranked results as a list of tuples, each containing the document and its fused score
    return reranked_results
    
def retrieve_and_rag(question,prompt_rag,sub_question_generator_chain):
    sub_questions = sub_question_generator_chain.invoke({"question":question})
    # Initialize a list to hold RAG chain results
    rag_results = []
    for sub_question in sub_questions:   
        # Retrieve documents for each sub-question with reciprocal reranking
        retrieved_docs = retrieval_chain_rag_fusion.invoke({"question": sub_question})
        # Use retrieved documents and sub-question in RAG chain
        answer = (prompt_rag 
            | chat_bedrock
            | StrOutputParser()
            | reciprocal_rank_fusion
            ).invoke({"context": retrieved_docs,"question": sub_question} 
        rag_results.append(answer)
    return rag_results,sub_questions
    
def format_qa_pairs(questions, answers):
    """Format Q and A pairs"""
    
    formatted_string = ""
    for i, (question, answer) in enumerate(zip(questions, answers), start=1):
        formatted_string += f"Question {i}: {question}nAnswer {i}: {answer}nn"
    return formatted_string.strip()

context = format_qa_pairs(questions, answers)

# Prompt
template = """Here is a set of Q+A pairs:

{context}

Use these to synthesize an answer to the question: {question}
"""
prompt_fusion = ChatPromptTemplate.from_template(template)
final_rag_chain = (prompt_fusion | llm_bedrock| StrOutputParser())

# Decompsing and reciprocal reranking
retrieval_chain_rag_fusion = generate_queries_decomposition | retriever.map() | reciprocal_rank_fusion
 
# Wrap the retrieval and RAG process in a RunnableLambda for integration into a chain
answers, questions = retrieve_and_rag(question, prompt_rag, generate_queries_decomposition)
final_rag_chain.invoke({"context":context,"question":question})

The RAG process is further enhanced by integrating a reciprocal re-ranker, which uses sophisticated NLP techniques. This makes sure the retrieved results are relevant and also semantically aligned with the user’s intended query. This multimodal retrieval approach seamlessly operates across vector databases and object stores, marking a significant advancement in the quest for more efficient, accurate, and contextually aware search mechanisms.

Multimodality retrievals

The mmRAG architecture enables the system to understand and process multimodal queries, retrieve relevant information from various sources, and generate multimodal answers by combining textual, tabular, and visual information in a unified manner. The following diagram highlights the data flows from queries to answers by using an advanced RAG and a multimodal retrieval engine powered by a multimodal embedding model (amazon.titan-embed-image-v1), an object store (Amazon S3), and a vector database (OpenSearch Serverless). For tables, the system retrieves relevant table locations and metadata, and computes the cosine similarity between the multimodal embedding and the vectors representing the table and its summary. Similarly, for images, the system retrieves relevant image locations and metadata, and computes the cosine similarity between the multimodal embedding and the vectors representing the image and its caption.

# Connect to the AOSS with given host and index name
docsearch = OpenSearchVectorSearch(
    index_name=index_name,  # TODO: use the same index-name used in the ingestion script
    embedding_function=bedrock_embeddings,
    opensearch_url=host,  # TODO: e.g. use the AWS OpenSearch domain instantiated previously
    http_auth=auth,
    timeout = 100,
    use_ssl = True,
    verify_certs = True,
    connection_class = RequestsHttpConnection,
    engine="faiss",
)

# Query for images with text
query = "What is the math and reasoning score MMMU (val) for Anthropic Claude 3 Sonnet ?"
t2i_results = docsearch.similarity_search_with_score(query, k=3)  # our search query  # return 3 most relevant docs

# Or Query AOSS with image aka image-to-image
with open(obj_image_path, "rb") as image_file:
    image_data = image_file.read()
    image_base64 = base64.b64encode(image_data).decode('utf8')
    image_vectors = get_image_embedding(image_base64=image_base64)
    i2i_results = docsearch.similarity_search_with_score_by_vector(image_vectors, k=3)  # our search query  # return 3 most relevant docs

The following screenshot illustrates the improved accuracy and comprehensive understanding of the user’s query with multimodality capability. The mmRAG approach is capable of grasping the intent behind the query, extracting relevant information from the provided chart, and estimating the overall costs, including the estimated output token size. Furthermore, it can perform mathematical calculations to determine the cost difference. The output includes the source chart and a link to its original location.

Use cases and limitations

Amazon Bedrock offers a comprehensive set of generative AI models for enhancing content comprehension across various modalities. By using the latest advancements in VLMs, such as Anthropic Claude 3 Sonnet and Haiku, as well as the Amazon Titan image embedding model, Amazon Bedrock enables you to expand your document understanding beyond text to include tables, charts, and images. The integration of OpenSearch Serverless provides enterprise-grade vector storage and approximate k-NN search capabilities, enabling efficient retrieval of relevant information. With advanced LangChain decomposition and fusion techniques, you can use multi-step querying across different LLMs to improve accuracy and gain deeper insights. This powerful combination of cutting-edge technologies allows you to unlock the full potential of multimodal content comprehension, enabling you to make informed decisions and drive innovation across various data sources.

The reliance on visual language models and image embedding models for comprehensive and accurate image captions has its limitations. Although these models excel at understanding visual and textual data, the multi-step query decomposition, reciprocal ranking, and fusion processes involved can lead to increased inference latency. This makes such solutions less suitable for real-time applications or scenarios that demand instantaneous responses. However, these solutions can be highly beneficial in use cases where higher accuracy and less time-sensitive responses are required, allowing for more detailed and accurate analysis of complex visual and textual data.

Conclusion

In this post, we discussed how you can use multimodal RAG to address limitations in multimodal generative AI assistants. We invite you to explore mmRAG and take advantage of the advanced features of Amazon Bedrock. These powerful tools can assist your business in gaining deeper insights, making well-informed decisions, and fostering innovation driven by more accurate data. Ongoing research efforts are focused on developing an agenic and graph-based pipeline to streamline the processes of parsing, injection, and retrieval. These approaches hold the promise of enhancing the reliability and reusability of the mmRAG system.

Acknowledgement

Authors would like to expression sincere gratitude to Nausheen Sayed, Karen Twelves, Li Zhang, Sophia Shramko, Mani Khanuja, Santhosh Kuriakose, and Theresa Perkins for their comprehensive reviews.


About the Authors

Alfred Shen is a Senior AI/ML Specialist at AWS. He has been working in Silicon Valley, holding technical and managerial positions in diverse sectors including healthcare, finance, and high-tech. He is a dedicated applied AI/ML researcher, concentrating on CV, NLP, and multimodality. His work has been showcased in publications such as EMNLP, ICLR, and Public Health.

Changsha Ma is an generative AI Specialist at AWS. She is a technologist with a PhD in Computer Science, a master’s degree in Education Psychology, and years of experience in data science and independent consulting in AI/ML. She is passionate about researching methodological approaches for machine and human intelligence. Outside of work, she loves hiking, cooking, hunting food, mentoring college students for entrepreneurship, and spending time with friends and families.

Julianna Delua is a Principal Specialist for AI/ML and generative AI. She serves the financial services industry customers including those in Capital Markets, Fintech and Payments. Julianna enjoys helping businesses turn new ideas into solutions and transform the organizations with AI-powered solutions.

Read More

How 20 Minutes empowers journalists and boosts audience engagement with generative AI on Amazon Bedrock

How 20 Minutes empowers journalists and boosts audience engagement with generative AI on Amazon Bedrock

This post is co-written with Aurélien Capdecomme and Bertrand d’Aure from 20 Minutes.

With 19 million monthly readers, 20 Minutes is a major player in the French media landscape. The media organization delivers useful, relevant, and accessible information to an audience that consists primarily of young and active urban readers. Every month, nearly 8.3 million 25–49-year-olds choose 20 Minutes to stay informed. Established in 2002, 20 Minutes consistently reaches more than a third (39 percent) of the French population each month through print, web, and mobile platforms.

As 20 Minutes’s technology team, we’re responsible for developing and operating the organization’s web and mobile offerings and driving innovative technology initiatives. For several years, we have been actively using machine learning and artificial intelligence (AI) to improve our digital publishing workflow and to deliver a relevant and personalized experience to our readers. With the advent of generative AI, and in particular large language models (LLMs), we have now adopted an AI by design strategy, evaluating the application of AI for every new technology product we develop.

One of our key goals is to provide our journalists with a best-in-class digital publishing experience. Our newsroom journalists work on news stories using Storm, our custom in-house digital editing experience. Storm serves as the front end for Nova, our serverless content management system (CMS). These applications are a focus point for our generative AI efforts.

In 2023, we identified several challenges where we see the potential for generative AI to have a positive impact. These include new tools for newsroom journalists, ways to increase audience engagement, and a new way to ensure advertisers can confidently assess the brand safety of our content. To implement these use cases, we rely on Amazon Bedrock.

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon Web Services (AWS) through a single API, along with a broad set of capabilities you need to build generative AI applications with security, privacy, and responsible AI.

This blog post outlines various use cases where we’re using generative AI to address digital publishing challenges. We dive into the technical aspects of our implementation and explain our decision to choose Amazon Bedrock as our foundation model provider.

Identifying challenges and use cases

Today’s fast-paced news environment presents both challenges and opportunities for digital publishers. At 20 Minutes, a key goal of our technology team is to develop new tools for our journalists that automate repetitive tasks, improve the quality of reporting, and allow us to reach a wider audience. Based on this goal, we have identified three challenges and corresponding use cases where generative AI can have a positive impact.

The first use case is to use automation to minimize the repetitive manual tasks that journalists perform as part of the digital publishing process. The core work of developing a news story revolves around researching, writing, and editing the article. However, when the article is complete, supporting information and metadata must be defined, such as an article summary, categories, tags, and related articles.

While these tasks can feel like a chore, they are critical to search engine optimization (SEO) and therefore the audience reach of the article. If we can automate some of these repetitive tasks, this use case has the potential to free up time for our newsroom to focus on core journalistic work while increasing the reach of our content.

The second use case is how we republish news agency dispatches at 20 Minutes. Like most news outlets, 20 Minutes subscribes to news agencies, such as the Agence France-Presse (AFP) and others, that publish a feed of news dispatches covering national and international news. 20 Minutes journalists select stories relevant to our audience and rewrite, edit, and expand on them to fit the editorial standards and unique tone our readership is used to. Rewriting these dispatches is also necessary for SEO, as search engines rank duplicate content low. Because this process follows a repeatable pattern, we decided to build an AI-based tool to simplify the republishing process and reduce the time spent on it.

The third and final use case we identified is to improve transparency around the brand safety of our published content. As a digital publisher, 20 Minutes is committed to providing a brand-safe environment for potential advertisers. Content can be classified as brand-safe or not brand-safe based on its appropriateness for advertising and monetization. Depending on the advertiser and brand, different types of content might be considered appropriate. For example, some advertisers might not want their brand to appear next to news content about sensitive topics such as military conflicts, while others might not want to appear next to content about drugs and alcohol.

Organizations such as the Interactive Advertising Bureau (IAB) and the Global Alliance for Responsible Media (GARM) have developed comprehensive guidelines and frameworks for classifying the brand safety of content. Based on these guidelines, data providers such as the IAB and others conduct automated brand safety assessments of digital publishers by regularly crawling websites such as 20minutes.fr and calculating a brand safety score.

However, this brand safety score is site-wide and doesn’t break down the brand safety of individual news articles. Given the reasoning capabilities of LLMs, we decided to develop an automated per-article brand safety assessment based on industry-standard guidelines to provide advertisers with a real-time, granular view of the brand safety of 20 Minutes content.

Our technical solution

At 20 Minutes, we’ve been using AWS since 2017, and we aim to build on top of serverless services whenever possible.

The digital publishing frontend application Storm is a single-page application built using React and Material Design and deployed using Amazon Simple Storage Service (Amazon S3) and Amazon CloudFront. Our CMS backend Nova is implemented using Amazon API Gateway and several AWS Lambda functions. Amazon DynamoDB serves as the primary database for 20 Minutes articles. New articles and changes to existing articles are captured using DynamoDB Streams, which invokes processing logic in AWS Step Functions and feeds our search service based on Amazon OpenSearch.

We integrate Amazon Bedrock using AWS PrivateLink, which allows us to create a private connection between our Amazon Virtual Private Cloud (VPC) and Amazon Bedrock without traversing the public internet.

20 Minutes architecture diagramWhen working on articles in Storm, journalists have access to several AI tools implemented using Amazon Bedrock. Storm is a block-based editor that allows journalists to combine multiple blocks of content, such as title, lede, text, image, social media quotes, and more, into a complete article. With Amazon Bedrock, journalists can use AI to generate an article summary suggestion block and place it directly into the article. We use a single-shot prompt with the full article text in context to generate the summary.

Storm CMS also gives journalists suggestions for article metadata. This includes recommendations for appropriate categories, tags, and even in-text links. These references to other 20 Minutes content are critical to increasing audience engagement, as search engines rank content with relevant internal and external links higher.

To implement this, we use a combination of Amazon Comprehend and Amazon Bedrock to extract the most relevant terms from an article’s text and then perform a search against our internal taxonomic database in OpenSearch. Based on the results, Storm provides several suggestions of terms that should be linked to other articles or topics, which users can accept or reject.

20 Minutes summary generation feature

News dispatches become available in Storm as soon as we receive them from our partners such as AFP. Journalists can browse the dispatches and select them for republication on 20minutes.fr. Every dispatch is manually reworked by our journalists before publication. To do so, journalists first invoke a rewrite of the article by an LLM using Amazon Bedrock. For this, we use a low-temperature single-shot prompt that instructs the LLM not to reinterpret the article during the rewrite, and to keep the word count and structure as similar as possible. The rewritten article is then manually edited by a journalist in Storm like any other article.

To implement our new brand safety feature, we process every new article published on 20minutes.fr. Currently, we use a single shot prompt that includes both the article text and the IAB brand safety guidelines in context to get a sentiment assessment from the LLM. We then parse the response, store the sentiment, and make it publicly available for each article to be accessed by ad servers.

Lessons learned and outlook

When we started working on generative AI use cases at 20 Minutes, we were surprised at how quickly we were able to iterate on features and get them into production. Thanks to the unified Amazon Bedrock API, it’s easy to switch between models for experimentation and find the best model for each use case.

For the use cases described above, we use Anthropic’s Claude in Amazon Bedrock as our primary LLM because of its overall high quality and, in particular, its quality in recognizing French prompts and generating French completions. Because 20 Minutes content is almost exclusively French, these multilingual capabilities are key for us. We have found that careful prompt engineering is a key success factor and we closely adhere to Anthropic’s prompt engineering resources to maximize completion quality.

Even without relying on approaches like fine-tuning or retrieval-augmented generation (RAG) to date, we can implement use cases that deliver real value to our journalists. Based on data collected from our newsroom journalists, our AI tools save them an average of eight minutes per article. With around 160 pieces of content published every day, this is already a significant amount of time that can now be spent reporting the news to our readers, rather than performing repetitive manual tasks.

The success of these use cases depends not only on technical efforts, but also on close collaboration between our product, engineering, newsroom, marketing, and legal teams. Together, representatives from these roles make up our AI Committee, which establishes clear policies and frameworks to ensure the transparent and responsible use of AI at 20 Minutes. For example, every use of AI is discussed and approved by this committee, and all AI-generated content must undergo human validation before being published.

We believe that generative AI is still in its infancy when it comes to digital publishing, and we look forward to bringing more innovative use cases to our platform this year. We’re currently working on deploying fine-tuned LLMs using Amazon Bedrock to accurately match the tone and voice of our publication and further improve our brand safety analysis capabilities. We also plan to use Bedrock models to tag our existing image library and provide automated suggestions for article images.

Why Amazon Bedrock?

Based on our evaluation of several generative AI model providers and our experience implementing the use cases described above, we selected Amazon Bedrock as our primary provider for all our foundation model needs. The key reasons that influenced this decision were:

  1. Choice of models: The market for generative AI is evolving rapidly, and the AWS approach of working with multiple leading model providers ensures that we have access to a large and growing set of foundational models through a single API.
  2. Inference performance: Amazon Bedrock delivers low-latency, high-throughput inference. With on-demand and provisioned throughput, the service can consistently meet all of our capacity needs.
  3. Private model access: We use AWS PrivateLink to establish a private connection to Amazon Bedrock endpoints without traversing the public internet, ensuring that we maintain full control over the data we send for inference.
  4. Integration with AWS services: Amazon Bedrock is tightly integrated with AWS services such as AWS Identity and Access Management (IAM) and the AWS Software Development Kit (AWS SDK). As a result, we were able to quickly integrate Bedrock into our existing architecture without having to adapt any new tools or conventions.

Conclusion and outlook

In this blog post, we described how 20 Minutes is using generative AI on Amazon Bedrock to empower our journalists in the newsroom, reach a broader audience, and make brand safety transparent to our advertisers. With these use cases, we’re using generative AI to bring more value to our journalists today, and we’ve built a foundation for promising new AI use cases in the future.

To learn more about Amazon Bedrock, start with Amazon Bedrock Resources for documentation, blog posts, and more customer success stories.


About the authors

Aurélien CapdecommeAurélien Capdecomme is the Chief Technology Officer at 20 Minutes, where he leads the IT development and infrastructure teams. With over 20 years of experience in building efficient and cost-optimized architectures, he has a strong focus on serverless strategy, scalable applications and AI initiatives. He has implemented innovation and digital transformation strategies at 20 Minutes, overseeing the complete migration of digital services to the cloud.

Bertrand d'AureBertrand d’Aure is a software developer at 20 Minutes. An engineer by training, he designs and implements the backend of 20 Minutes applications, with a focus on the software used by journalists to create their stories. Among other things, he is responsible for adding generative AI features to the software to simplify the authoring process.

Dr. Pascal VogelDr. Pascal Vogel is a Solutions Architect at Amazon Web Services. He collaborates with enterprise customers across EMEA to build cloud-native solutions with a focus on serverless and generative AI. As a cloud enthusiast, Pascal loves learning new technologies and connecting with like-minded customers who want to make a difference in their cloud journey.

Read More

Efficient and cost-effective multi-tenant LoRA serving with Amazon SageMaker

Efficient and cost-effective multi-tenant LoRA serving with Amazon SageMaker

In the rapidly evolving landscape of artificial intelligence (AI), the rise of generative AI models has ushered in a new era of personalized and intelligent experiences. Organizations are increasingly using the power of these language models to drive innovation and enhance their services, from natural language processing to content generation and beyond.

Using generative AI models in the enterprise environment, however, requires taming their intrinsic power and enhancing their skills to address specific customer needs. In cases where an out-of-the-box model is missing knowledge of domain- or organization-specific terminologies, a custom fine-tuned model, also called a domain-specific large language model (LLM), might be an option for performing standard tasks in that domain or micro-domain. BloombergGPT is an example of LLM that was trained from scratch to have a better understanding of highly specialized vocabulary found in the financial domain. In the same sense, domain specificity can be addressed through fine-tuning at a smaller scale. Customers are fine-tuning generative AI models based on domains including finance, sales, marketing, travel, IT, HR, finance, procurement, healthcare and life sciences, customer service, and many more. Additionally, independent software vendors (ISVs) are building secure, managed, multi-tenant, end-to-end generative AI platforms with models that are customized and personalized based on their customer’s datasets and domains. For example, Forethought introduced SupportGPT, a generative AI platform for customer support.

As the demands for personalized and specialized AI solutions grow, businesses often find themselves grappling with the challenge of efficiently managing and serving a multitude of fine-tuned models across diverse use cases and customer segments. With the need to serve a wide range of AI-powered use cases, from resume parsing and job skill matching, domain-specific to email generation and natural language understanding, these businesses are often left with the daunting task of managing hundreds of fine-tuned models, each tailored to specific customer needs or use cases. The complexities of this challenge are compounded by the inherent scalability and cost-effectiveness concerns that come with deploying and maintaining such a diverse model ecosystem. Traditional approaches to model serving can quickly become unwieldy and resource intensive, leading to increased infrastructure costs, operational overhead, and potential performance bottlenecks.

Fine-tuning enormous language models is prohibitively expensive in terms of the hardware required and the storage and switching cost for hosting independent instances for different tasks. LoRA (Low-Rank Adaptation) is an efficient adaptation strategy that neither introduces inference latency nor reduces input sequence length while retaining high model quality. Importantly, it allows for quick task switching when deployed as a service by sharing the vast majority of the model parameters.

In this post, we explore a solution that addresses these challenges head-on using LoRA serving with Amazon SageMaker. By using the new performance optimizations of LoRA techniques in SageMaker large model inference (LMI) containers along with inference components, we demonstrate how organizations can efficiently manage and serve their growing portfolio of fine-tuned models, while optimizing costs and providing seamless performance for their customers.

The latest SageMaker LMI container offers unmerged-LoRA inference, sped up with our LMI-Dist inference engine and OpenAI style chat schema. To learn more about LMI, refer to LMI Starting Guide, LMI handlers Inference API Schema, and Chat Completions API Schema.

New LMI features for serving LoRA adapters at scale on SageMaker

There are two kinds of LoRA that can be put onto various engines:

  • Merged LoRA – This applies the adapter by modifying the base model in place. It has zero added latency while running, but has a cost to apply or unapply the merge. It works best for cases with only a few adapters. It is best for single-adapter batches, and doesn’t support multi-adapter batches.
  • Unmerged LoRA – This alters the model operators to factor in the adapters without changing the base model. It has a higher inference latency for the additional adapter operations. However, it does support multi-adapter batches. It works best for use cases with a large number of adapters.

The new LMI container offers out-of-box integration and abstraction with SageMaker for hosting multiple unmerged LoRA adapters with higher performance (low latency and high throughput) using the vLLM backend LMI-Dist backend that uses vLLM, which in-turn uses S-LORA and Punica. The LMI container offers two backends for serving LoRA adapters: the LMI-Dist backend (recommended) and the vLLM Backend. Both backends are based on the open source vLLM library for serving LoRA adapters, but the LMI-Dist backend provides additional optimized continuous (rolling) batching implementation. You are not required to configure these libraries separately; the LMI container provides the higher-level abstraction through the vLLM and LMI-Dist backends. We recommend you start with the LMI-Dist backend because it has additional performance optimizations related to continuous (rolling) batching.

S-LoRA stores all adapters in the main memory and fetches the adapters used by the currently running queries to the GPU memory. To efficiently use the GPU memory and reduce fragmentation, S-LoRA proposes unified paging. Unified paging uses a unified memory pool to manage dynamic adapter weights with different ranks and KV cache tensors with varying sequence lengths. Additionally, S-LoRA employs a novel tensor parallelism strategy and highly optimized custom CUDA kernels for heterogeneous batching of LoRA computation. Collectively, these features enable S-LoRA to serve thousands of LoRA adapters on a single GPU or across multiple GPUs with a small overhead.

Punica is designed to efficiently serve multiple LoRA models on a shared GPU cluster. It achieves this by following three design guidelines:

  • Consolidating multi-tenant LoRA serving workloads to a small number of GPUs to increase overall GPU utilization
  • Enabling batching for different LoRA models to improve performance and GPU utilization
  • Focusing on the decode stage performance, which is the predominant factor in the cost of model serving

Punica uses a new CUDA kernel design called Segmented Gather Matrix-Vector Multiplication (SGMV) to batch GPU operations for concurrent runs of multiple LoRA models, significantly improving GPU efficiency in terms of memory and computation. Punica also implements a scheduler that routes requests to active GPUs and migrates requests for consolidation, optimizing GPU resource allocation. Overall, Punica achieves high throughput and low latency in serving multi-tenant LoRA models on a shared GPU cluster. For more information, read the Punica whitepaper.

The following figure shows the multi LoRA adapter serving stack of the LMI container on SageMaker.

As shown in the preceding figure, the LMI container provides the higher-level abstraction through the vLLM and LMI-Dist backends to serve LoRA adapters at scale on SageMaker. As a result, you’re not required to configure the underlying libraries (S-LORA, Punica, or vLLM) separately. However, there might be cases where you want to control some of the performance driving parameters depending on your use case and application performance requirements. The following are the common configuration options the LMI container provides to tune LoRA serving. For more details on configuration options specific to each backend, refer to vLLM Engine User Guide and LMI-Dist Engine User Guide.

option.enable_lora: This config enables support for LoRA adapters.
option.max_loras: This config determines the maximum number of LoRA adapters that can be run at once. Allocates GPU memory for those number adapters.
option.max_lora_rank: This config determines the maximum rank allowed for a LoRA adapter. Set this value to maximum rank of your adapters. Setting a larger value will enable more adapters at a greater memory usage cost.
option.lora_extra_vocab_size: This config determines the maximum additional vocabulary that can be added through a LoRA adapter.
option.max_cpu_loras: This config determines the maximum number of LoRA adapters to cache in memory. All others will be evicted to disk.

Design patterns for serving fine-tuned LLMs at scale

Enterprises grappling with the complexities of managing generative AI models often encounter scenarios where a robust and flexible design pattern is crucial. One common use case involves a single base model with multiple LoRA adapters, each tailored to specific customer needs or use cases. This approach allows organizations to use a foundational language model while maintaining the agility to fine-tune and deploy customized versions for their diverse customer base.

Single-base model with multiple fine-tuned LoRA adapters

An enterprise offering a resume parsing and job skill matching service may use a single high-performance base model, such as Mistral 7B. The Mistral 7B base model is particularly well-suited for job-related content generation tasks, such as creating personalized job descriptions and tailored email communications. Mistral’s strong performance in natural language generation and its ability to capture industry-specific terminology and writing styles make it a valuable asset for such an enterprise’s customers in the HR and recruitment space. By fine-tuning Mistral 7B with LoRA adapters, enterprises can make sure the generated content aligns with the unique branding, tone, and requirements of each customer, delivering a highly personalized experience.

Multi-base models with multiple fine-tuned LoRA adapters

On the other hand, the same enterprise may use the Llama 3 base model for more general natural language processing tasks, such as resume parsing, skills extraction, and candidate matching. Llama 3’s broad knowledge base and robust language understanding capabilities enable it to handle a wide range of documents and formats, making sure their services can effectively process and analyze candidate information, regardless of the source. By fine-tuning Llama 3 with LoRA adapters, such enterprises can tailor the model’s performance to specific customer requirements, such as regional dialects, industry-specific terminology, or unique data formats. By employing a multi-base model, multi-adapter design pattern, enterprises can take advantage of the unique strengths of each language model to deliver a comprehensive and highly personalized job profile to a candidate resume matching service. This approach allows enterprises to cater to the diverse needs of their customers, making sure each client receives tailored AI-powered solutions that enhance their recruitment and talent management processes.

Effectively implementing and managing these design patterns, where multiple base models are coupled with numerous LoRA adapters, is a key challenge that enterprises must address to unlock the full potential of their generative AI investments. A well-designed and scalable approach to model serving is crucial in delivering cost-effective, high-performance, and personalized experiences to customers.

Solution overview

The following sections outline the coding steps to deploy a base LLM, TheBloke/Llama-2-7B-Chat-fp16, with LoRA adapters on SageMaker. It involves preparing a compressed archive with the base model files and LoRA adapter files, uploading it to Amazon Simple Storage Service (Amazon S3), selecting and configuring the SageMaker LMI container to enable LoRA support, creating a SageMaker endpoint configuration and endpoint, defining an inference component for the model, and sending inference requests specifying different LoRA adapters like Spanish (“es”) and French (“fr”) in the request payload to use those fine-tuned language capabilities. For more information on deploying models using SageMaker inference components, see Amazon SageMaker adds new inference capabilities to help reduce foundation model deployment costs and latency.

To showcase multi-base models with their LoRA adapters, we add another base model, mistralai/Mistral-7B-v0.1, and its LoRA adapter to the same SageMaker endpoint, as shown in the following diagram.

Prerequisites

You need to complete some prerequisites before you can run the notebook:

Upload your LoRA adapters to Amazon S3

To prepare the LoRA adapters, create a adapters.tar.gz compressed archive containing the LoRA adapters directory. The adapters directory should contain subdirectories for each of the LoRA adapters, with each adapter subdirectory containing the adapter_model.bin file (the adapter weights) and the adapter_config.json file (the adapter configuration). We typically obtain these adapter files by using the PeftModel.save_pretrained() method from the Peft library. After you assemble the adapters directory with the adapter files, you compress it into a adapters.tar.gz archive and upload it to an S3 bucket for deployment or sharing. We include the LoRA adapters in the adapters directory as follows:

|- model_dir
    |- adapters/
        |--- <adapter_1>/
        |--- <adapter_2>/
        |--- ...
        |--- <adapter_n>/

Download LoRA adapters, compress them, and upload the compressed file to Amazon S3:

snapshot_download("UnderstandLing/llama-2-7b-chat-es", local_dir="llama-lora-multi-adapter/adapters/es", local_dir_use_symlinks=False)
snapshot_download("UnderstandLing/llama-2-7b-chat-fr", local_dir="llama-lora-multi-adapter/adapters/fr", local_dir_use_symlinks=False)
snapshot_download("UnderstandLing/llama-2-7b-chat-ru", local_dir="llama-lora-multi-adapter/adapters/ru", local_dir_use_symlinks=False)
!tar czvf adapters.tar.gz -C llama-lora-multi-adapter .
s3_code_artifact_accelerate = sess.upload_data("adapters.tar.gz", model_bucket, s3_code_prefix)

Select and LMI container and configure LMI to enable LoRA

SageMaker provides optimized containers for LMI that support different frameworks for model parallelism, allowing the deployment of LLMs across multiple GPUs. For this post, we employ the DeepSpeed container, which encompasses frameworks such as DeepSpeed and vLLM, among others. See the following code:

deepspeed_image_uri = image_uris.retrieve(
    framework="djl-deepspeed",
    region=sess.boto_session.region_name,
    version="0.27.0"
)

env_generation = {"OPTION_MODEL_ID": "TheBloke/Llama-2-7B-Chat-fp16",
                  "OPTION_TRUST_REMOTE_CODE": "true",
                  "OPTION_TENSOR_PARALLEL_DEGREE": "2",
                  "OPTION_ROLLING_BATCH": "lmi-dist",
                  "OPTION_MAX_ROLLING_BATCH_SIZE": "32",
                  "OPTION_DTYPE": "fp16",
                  "OPTION_ENABLE_LORA": "true",
                  "OPTION_GPU_MEMORY_UTILIZATION": "0.8",
                  "OPTION_MAX_LORA_RANK": "64",
                  "OPTION_MAX_CPU_LORAS": "4"
                 }

Create a SageMaker endpoint configuration

Create an endpoint configuration using the appropriate instance type. Set ContainerStartupHealthCheckTimeoutInSeconds to account for the time taken to download the LLM weights from Amazon S3 or the model hub, and the time taken to load the model on the GPUs:

endpoint_config_response = sm_client.create_endpoint_config(
    EndpointConfigName=endpoint_config_name,
    ExecutionRoleArn=role,
    ProductionVariants=[
        {
            "VariantName": variant_name,
            "InstanceType": instance_type,
            "InitialInstanceCount": initial_instance_count,
            "ModelDataDownloadTimeoutInSeconds": model_data_download_timeout_in_seconds,
            "ContainerStartupHealthCheckTimeoutInSeconds": container_startup_health_check_timeout_in_seconds,
            "ManagedInstanceScaling": {
                "Status": "ENABLED",
                "MinInstanceCount": initial_instance_count,
                "MaxInstanceCount": max_instance_count,
            },
            "RoutingConfig": {
                'RoutingStrategy': 'LEAST_OUTSTANDING_REQUESTS'
            },
        },
    ],
)

Create a SageMaker endpoint

Create a SageMaker endpoint based on the endpoint configuration defined in the previous step. You use this endpoint for hosting the inference component (model) inference and make invocations.

create_endpoint_response = sm_client.create_endpoint(
    EndpointName=f"{endpoint_name}", EndpointConfigName=endpoint_config_name
)

Create a SageMaker inference component (model)

Now that you have created a SageMaker endpoint, let’s create our model as an inference component. The SageMaker inference component enables you to deploy one or more foundation models (FMs) on the same SageMaker endpoint and control how many accelerators and how much memory is reserved for each FM. See the following code:

model_name = sagemaker.utils.name_from_base("lmi-llama2-7b")
print(model_name)

create_model_response = sm_client.create_model(
    ModelName=model_name,
    ExecutionRoleArn=role,
    PrimaryContainer={
        "Image": inference_image_uri,
        "Environment": env_generation,
        "ModelDataUrl": s3_code_artifact_accelerate,
    }
)

prefix = sagemaker.utils.unique_name_from_base("lmi-llama2-7b")
inference_component_name = f"{prefix}-inference-component"

sm_client.create_inference_component(
    InferenceComponentName=inference_component_name,
    EndpointName=endpoint_name,
    VariantName=variant_name,
    Specification={
        "ModelName": model_name,
        # "Container": {
        #     "Image": inference_image_uri,
        #     "ArtifactUrl": s3_code_artifact,
        # },
        "StartupParameters": {
            "ModelDataDownloadTimeoutInSeconds": 1200,
            "ContainerStartupHealthCheckTimeoutInSeconds": 1200,
        },
        "ComputeResourceRequirements": {
            "NumberOfAcceleratorDevicesRequired": 2,
            "MinMemoryRequiredInMb": 7*2*1024,
        },
    },
    RuntimeConfig={"CopyCount": 1},
)

Make inference requests using different LoRA adapters

With the endpoint and inference model ready, you can now send requests to the endpoint using the LoRA adapters you fine-tuned for Spanish and French languages. The specific LoRA adapter is specified in the request payload under the "adapters" field. We use "es" for the Spanish language adapter and "fr" for the French language adapter, as shown in the following code:

# Testing Spanish (es) adapter
response_model = smr_client.invoke_endpoint(
    InferenceComponentName=inference_component_name,
    EndpointName=endpoint_name,
    Body=json.dumps({"inputs": ["Piensa en una excusa creativa para decir que no necesito ir a la fiesta."],
                     "adapters": ["es"]}),
    ContentType="application/json",
)

response_model["Body"].read().decode("utf8")

# Testing French (fr) adapter
response_model = smr_client.invoke_endpoint(
    InferenceComponentName=inference_component_name,
    EndpointName=endpoint_name,
    Body=json.dumps({"inputs": ["Pensez à une excuse créative pour dire que je n'ai pas besoin d'aller à la fête."],
                     "adapters": ["fr"]}),
    ContentType="application/json",
)

response_model["Body"].read().decode("utf8")

# Testing Russian (ru) adapter
response_model = smr_client.invoke_endpoint(
    InferenceComponentName=inference_component_name,
    EndpointName=endpoint_name,
    Body=json.dumps({"inputs": ["Придумайте креативное "],
                     "parameters": params,
                     "adapters": ["ru"]}),
    ContentType="application/json",
)

response_model["Body"].read().decode("utf8")

Add another base model and inference component and its LoRA adapter

Let’s add another base model and its LoRA adapter to the same SageMaker endpoint for multi-base models with multiple fine-tuned LoRA adapters. The code is very similar to the previous code for creating the Llama base model and its LoRA adapter.

Configure the SageMaker LMI container to host the base model (mistralai/Mistral-7B-v0.1) and its LoRA adapter (mistral-lora-multi-adapter/adapters/fr):

deepspeed_image_uri = image_uris.retrieve(
    framework="djl-deepspeed",
    region=sess.boto_session.region_name,
    version="0.27.0"
)

my_hf_token = "<YOUR_HuggingFacePersonalAccessToken_HERE>"

env_generation = {"HF_TOKEN": my_hf_token,
                  "OPTION_MODEL_ID": "mistralai/Mistral-7B-v0.1",
                  "OPTION_TRUST_REMOTE_CODE": "true",
                  "OPTION_TENSOR_PARALLEL_DEGREE": "2",
                  "OPTION_ENABLE_LORA": "true",
                  "OPTION_GPU_MEMORY_UTILIZATION": "0.8",
                  "OPTION_MAX_LORA_RANK": "64",
                  "OPTION_MAX_CPU_LORAS": "4"
                 }

Create a new SageMaker model and inference component for the base model (mistralai/Mistral-7B-v0.1) and its LoRA adapter (mistral-lora-multi-adapter/adapters/fr):

model_name2 = sagemaker.utils.name_from_base("lmi-mistral-7b")

create_model_response = sm_client.create_model(
    ModelName=model_name2,
    ExecutionRoleArn=role,
    PrimaryContainer={
        "Image": inference_image_uri,
        "Environment": env,
        "ModelDataUrl": s3_code_artifact_accelerate,
    }
)

sm_client.create_inference_component(
    InferenceComponentName=inference_component_name2,
    EndpointName=endpoint_name,
    VariantName=variant_name,
    Specification={
        "ModelName": model_name2,
        # "Container": {
        #     "Image": inference_image_uri,
        #     "ArtifactUrl": s3_code_artifact,
        # },
        "StartupParameters": {
            "ModelDataDownloadTimeoutInSeconds": 3600,
            "ContainerStartupHealthCheckTimeoutInSeconds": 1200,
        },
        "ComputeResourceRequirements": {
            "NumberOfAcceleratorDevicesRequired": 2,
            "MinMemoryRequiredInMb": 7*2*1024,
        },
    },
    RuntimeConfig={"CopyCount": 1},
)

Invoke the same SageMaker endpoint for the newly created inference component for the base model (mistralai/Mistral-7B-v0.1) and its LoRA adapter (mistral-lora-multi-adapter/adapters/fr):

# Testing French (fr) adapter
response_model = smr_client.invoke_endpoint(
    InferenceComponentName=inference_component_name2,
    EndpointName=endpoint_name,
    Body=json.dumps({"inputs": ["Pensez à une excuse créative pour dire que je n'ai pas besoin d'aller à la fête."],
                     "adapters": ["fr"]}),
    ContentType="application/json",
)

response_model["Body"].read().decode("utf8")

Clean up

Delete the SageMaker inference components, models, endpoint configuration, and endpoint to avoid incurring unnecessary costs:

sm_client.delete_inference_component(InferenceComponentName=inference_component_name)
sm_client.delete_inference_component(InferenceComponentName=inference_component_name2)
sm_client.delete_endpoint(EndpointName=endpoint_name)
sm_client.delete_endpoint_config(EndpointConfigName=endpoint_config_name)
sm_client.delete_model(ModelName=model_name)
sm_client.delete_model(ModelName=model_name2)

Conclusion

The ability to efficiently manage and serve a diverse portfolio of fine-tuned generative AI models is paramount if you want your organization to deliver personalized and intelligent experiences at scale in today’s rapidly evolving AI landscape. With the inference capabilities of SageMaker LMI coupled with the performance optimizations of LoRA techniques, you can overcome the challenges of multi-tenant fine-tuned LLM serving. This solution enables you to consolidate AI workloads, batch operations across multiple models, and optimize resource utilization for cost-effective, high-performance delivery of tailored AI solutions to your customers. As demand for specialized AI experiences continues to grow, we’ve shown how the scalable infrastructure and cutting-edge model serving techniques of SageMaker position AWS as a powerful platform for unlocking generative AI’s full potential. To start exploring the benefits of this solution for yourself, we encourage you to use the code example and resources we’ve provided in this post.


About the authors

Michael Nguyen is a Senior Startup Solutions Architect at AWS, specializing in leveraging AI/ML to drive innovation and develop business solutions on AWS. Michael holds 12 AWS certifications and has a BS/MS in Electrical/Computer Engineering and an MBA from Penn State University, Binghamton University, and the University of Delaware.

Dhawal PatelDhawal Patel is a Principal Machine Learning Architect at AWS. He has worked with organizations ranging from large enterprises to mid-sized startups on problems related to distributed computing, and Artificial Intelligence. He focuses on Deep learning including NLP and Computer Vision domains. He helps customers achieve high performance model inference on SageMaker.

Vivek Gangasani is a AI/ML Startup Solutions Architect for Generative AI startups at AWS. He helps emerging GenAI startups build innovative solutions using AWS services and accelerated compute. Currently, he is focused on developing strategies for fine-tuning and optimizing the inference performance of Large Language Models. In his free time, Vivek enjoys hiking, watching movies and trying different cuisines.

Qing Lan is a Software Development Engineer in AWS. He has been working on several challenging products in Amazon, including high performance ML inference solutions and high performance logging system. Qing’s team successfully launched the first Billion-parameter model in Amazon Advertising with very low latency required. Qing has in-depth knowledge on the infrastructure optimization and Deep Learning acceleration.

Read More

Mixtral 8x22B is now available in Amazon SageMaker JumpStart

Mixtral 8x22B is now available in Amazon SageMaker JumpStart

Today, we are excited to announce the Mixtral-8x22B large language model (LLM), developed by Mistral AI, is available for customers through Amazon SageMaker JumpStart to deploy with one click for running inference. You can try out this model with SageMaker JumpStart, a machine learning (ML) hub that provides access to algorithms and models so you can quickly get started with ML. In this post, we walk through how to discover and deploy the Mixtral-8x22B model.

What is Mixtral 8x22B

Mixtral 8x22B is Mistral AI’s latest open-weights model and sets a new standard for performance and efficiency of available foundation models, as measured by Mistral AI across standard industry benchmarks. It is a sparse Mixture-of-Experts (SMoE) model that uses only 39 billion active parameters out of 141 billion, offering cost-efficiency for its size. Continuing with Mistral AI’s belief in the power of publicly available models and broad distribution to promote innovation and collaboration, Mixtral 8x22B is released under Apache 2.0, making the model available for exploring, testing, and deploying. Mixtral 8x22B is an attractive option for customers selecting between publicly available models and prioritizing quality, and for those wanting a higher quality from mid-sized models, such as Mixtral 8x7B and GPT 3.5 Turbo, while maintaining high throughput.

Mixtral 8x22B provides the following strengths:

  • Multilingual native capabilities in English, French, Italian, German, and Spanish languages
  • Strong mathematics and coding capabilities
  • Capable of function calling that enables application development and tech stack modernization at scale
  • 64,000-token context window that allows precise information recall from large documents

About Mistral AI

Mistral AI is a Paris-based company founded by seasoned researchers from Meta and Google DeepMind. During his time at DeepMind, Arthur Mensch (Mistral CEO) was a lead contributor on key LLM projects such as Flamingo and Chinchilla, while Guillaume Lample (Mistral Chief Scientist) and Timothée Lacroix (Mistral CTO) led the development of LLaMa LLMs during their time at Meta. The trio are part of a new breed of founders who combine deep technical expertise and operating experience working on state-of-the-art ML technology at the largest research labs. Mistral AI has championed small foundational models with superior performance and commitment to model development. They continue to push the frontier of artificial intelligence (AI) and make it accessible to everyone with models that offer unmatched cost-efficiency for their respective sizes, delivering an attractive performance-to-cost ratio. Mixtral 8x22B is a natural continuation of Mistral AI’s family of publicly available models that include Mistral 7B and Mixtral 8x7B, also available on SageMaker JumpStart. More recently, Mistral launched commercial enterprise-grade models, with Mistral Large delivering top-tier performance and outperforming other popular models with native proficiency across multiple languages.

What is SageMaker JumpStart

With SageMaker JumpStart, ML practitioners can choose from a growing list of best-performing foundation models. ML practitioners can deploy foundation models to dedicated Amazon SageMaker instances within a network isolated environment, and customize models using SageMaker for model training and deployment. You can now discover and deploy Mixtral-8x22B with a few clicks in Amazon SageMaker Studio or programmatically through the SageMaker Python SDK, enabling you to derive model performance and MLOps controls with SageMaker features such as Amazon SageMaker Pipelines, Amazon SageMaker Debugger, or container logs. The model is deployed in an AWS secure environment and under your VPC controls, providing data encryption at rest and in-transit.

SageMaker also adheres to standard security frameworks such as ISO27001 and SOC1/2/3 in addition to complying with various regulatory requirements. Compliance frameworks like General Data Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA), Health Insurance Portability and Accountability Act (HIPAA), and Payment Card Industry Data Security Standard (PCI DSS) are supported to make sure data handling, storing, and process meet stringent security standards.

SageMaker JumpStart availability is dependent on the model; Mixtral-8x22B v0.1 is currently supported in the US East (N. Virginia) and US West (Oregon) AWS Regions.

Discover models

You can access Mixtral-8x22B foundation models through SageMaker JumpStart in the SageMaker Studio UI and the SageMaker Python SDK. In this section, we go over how to discover the models in SageMaker Studio.

SageMaker Studio is an integrated development environment (IDE) that provides a single web-based visual interface where you can access purpose-built tools to perform all ML development steps, from preparing data to building, training, and deploying your ML models. For more details on how to get started and set up SageMaker Studio, refer to Amazon SageMaker Studio.

In SageMaker Studio, you can access SageMaker JumpStart by choosing JumpStart in the navigation pane.

From the SageMaker JumpStart landing page, you can search for “Mixtral” in the search box. You will see search results showing Mixtral 8x22B Instruct, various Mixtral 8x7B models, and Dolphin 2.5 and 2.7 models.

You can choose the model card to view details about the model such as license, data used to train, and how to use. You will also find the Deploy button, which you can use to deploy the model and create an endpoint.

SageMaker has seamless logging, monitoring, and auditing enabled for deployed models with native integrations with services like AWS CloudTrail for logging and monitoring to provide insights into API calls and Amazon CloudWatch to collect metrics, logs, and event data to provide information into the model’s resource utilization.

Deploy a model

Deployment starts when you choose Deploy. After deployment finishes, an endpoint has been created. You can test the endpoint by passing a sample inference request payload or selecting your testing option using the SDK. When you select the option to use the SDK, you will see example code that you can use in your preferred notebook editor in SageMaker Studio. This will require an AWS Identity and Access Management (IAM) role and policy attached to it to restrict model access. Additionally, if you choose to deploy the model endpoint within SageMaker Studio, you will be prompted to choose an instance type, initial instance count, and maximum instance count. The ml.p4d.24xlarge and ml.p4de.24xlarge instance types are the only instance types currently supported for Mixtral 8x22B Instruct v0.1.

To deploy using the SDK, we start by selecting the Mixtral-8x22b model, specified by the model_id with value huggingface-llm-mistralai-mixtral-8x22B-instruct-v0-1. You can deploy any of the selected models on SageMaker with the following code. Similarly, you can deploy Mixtral-8x22B instruct using its own model ID.

from sagemaker.jumpstart.model import JumpStartModel model = JumpStartModel(model_id=""huggingface-llm-mistralai-mixtral-8x22B-instruct-v0-1") predictor = model.deploy()

This deploys the model on SageMaker with default configurations, including the default instance type and default VPC configurations. You can change these configurations by specifying non-default values in JumpStartModel.

After it’s deployed, you can run inference against the deployed endpoint through the SageMaker predictor:

payload = {"inputs": "Hello!"} 
predictor.predict(payload)

Example prompts

You can interact with a Mixtral-8x22B model like any standard text generation model, where the model processes an input sequence and outputs predicted next words in the sequence. In this section, we provide example prompts.

Mixtral-8x22b Instruct

The instruction-tuned version of Mixtral-8x22B accepts formatted instructions where conversation roles must start with a user prompt and alternate between user instruction and assistant (model answer). The instruction format must be strictly respected, otherwise the model will generate sub-optimal outputs. The template used to build a prompt for the Instruct model is defined as follows:

<s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]]

<s> and </s> are special tokens for beginning of string (BOS) and end of string (EOS), whereas [INST] and [/INST] are regular strings.

The following code shows how you can format the prompt in instruction format:

from typing import Dict, List

def format_instructions(instructions: List[Dict[str, str]]) -> List[str]:
    """Format instructions where conversation roles must alternate user/assistant/user/assistant/..."""
    prompt: List[str] = []
    for user, answer in zip(instructions[::2], instructions[1::2]):
        prompt.extend(["<s>", "[INST] ", (user["content"]).strip(), " [/INST] ", (answer["content"]).strip(), "</s>"])
    prompt.extend(["<s>", "[INST] ", (instructions[-1]["content"]).strip(), " [/INST] ","</s>"])
    return "".join(prompt)


def print_instructions(prompt: str, response: str) -> None:
    bold, unbold = '33[1m', '33[0m'
    print(f"{bold}> Input{unbold}n{prompt}nn{bold}> Output{unbold}n{response[0]['generated_text']}n")

Summarization prompt

You can use the following code to get a response for a summarization:

instructions = [{"role": "user", "content": """Summarize the following information. Format your response in short paragraph.

Article:

Contextual compression - To address the issue of context overflow discussed earlier, you can use contextual compression to compress and filter the retrieved documents in alignment with the query’s context, so only pertinent information is kept and processed. This is achieved through a combination of a base retriever for initial document fetching and a document compressor for refining these documents by paring down their content or excluding them entirely based on relevance, as illustrated in the following diagram. This streamlined approach, facilitated by the contextual compression retriever, greatly enhances RAG application efficiency by providing a method to extract and utilize only what’s essential from a mass of information. It tackles the issue of information overload and irrelevant data processing head-on, leading to improved response quality, more cost-effective LLM operations, and a smoother overall retrieval process. Essentially, it’s a filter that tailors the information to the query at hand, making it a much-needed tool for developers aiming to optimize their RAG applications for better performance and user satisfaction.
"""}]
prompt = format_instructions(instructions)
payload = {
"inputs": prompt,
"parameters": {"max_new_tokens": 1500}
}
response=predictor.predict(payload)
print_instructions(prompt, response)

The following is an example of the expected output:

> > Input
<s>[INST] Summarize the following information. Format your response in short paragraph.

Article:

Contextual compression - To address the issue of context overflow discussed earlier, you can use contextual compression to compress and filter the retrieved documents in alignment with the query’s context, so only pertinent information is kept and processed. This is achieved through a combination of a base retriever for initial document fetching and a document compressor for refining these documents by paring down their content or excluding them entirely based on relevance, as illustrated in the following diagram. This streamlined approach, facilitated by the contextual compression retriever, greatly enhances RAG application efficiency by providing a method to extract and utilize only what’s essential from a mass of information. It tackles the issue of information overload and irrelevant data processing head-on, leading to improved response quality, more cost-effective LLM operations, and a smoother overall retrieval process. Essentially, it’s a filter that tailors the information to the query at hand, making it a much-needed tool for developers aiming to optimize their RAG applications for better performance and user satisfaction. [/INST] </s>
> Output
<s>[INST] Summarize the following information. Format your response in short paragraph.

Article:

Contextual compression - To address the issue of context overflow discussed earlier, you can use contextual compression to compress and filter the retrieved documents in alignment with the query’s context, so only pertinent information is kept and processed. This is achieved through a combination of a base retriever for initial document fetching and a document compressor for refining these documents by paring down their content or excluding them entirely based on relevance, as illustrated in the following diagram. This streamlined approach, facilitated by the contextual compression retriever, greatly enhances RAG application efficiency by providing a method to extract and utilize only what’s essential from a mass of information. It tackles the issue of information overload and irrelevant data processing head-on, leading to improved response quality, more cost-effective LLM operations, and a smoother overall retrieval process. Essentially, it’s a filter that tailors the information to the query at hand, making it a much-needed tool for developers aiming to optimize their RAG applications for better performance and user satisfaction. [/INST] </s>Contextual compression is a technique used to manage the issue of context overflow in information retrieval. This method involves compressing and filtering the retrieved documents to align with the query's context, ensuring that only relevant information is processed. This is achieved through a two-step process: a base retriever fetches the initial set of documents, and a document compressor refines these documents by either reducing their content or excluding them entirely based on relevance.

The contextual compression retriever significantly improves the efficiency of Retrieval-Augmented Generation (RAG) applications by extracting and utilizing only the essential information from a large pool of data. This approach addresses the problem of information overload and irrelevant data processing, leading to improved response quality, cost-effective operations, and a smoother retrieval process. In essence, contextual compression acts as a filter that tailors the information to the specific query, making it an indispensable tool for developers aiming to optimize their RAG applications for better performance and user satisfaction.

Multilingual translation prompt

You can use the following code to get a response for a multilingual translation:

Prompt

instructions = [{"role": "user", "content": """
<You are a multilingual assistant. Translate the following sentences in the order in which they are presented into French, German, and Spanish. Make sure to label each section as French, German, and Spanish. [/INST]

1.	Customer: "I recently ordered a set of wireless headphones, but I received a different model. What steps should I take to receive the correct product I ordered?"
2.	Customer: "I purchased a customizable laptop last month and opted for specific upgrades. However, the laptop's performance isn't as expected. Can I have a technician look into it, or should I consider returning it?"
3.	Customer: "My order for a designer handbag was supposed to include a matching wallet as part of a promotional deal, but the wallet was not in the package. How can this issue be resolved?"
4.	Customer: "I see that the tracking information for my order of ceramic cookware shows it was delivered, but I haven't received it. Could you assist in determining where my package might be?"
5.	Customer: "I'm trying to buy an antique mirror from your vintage collection, but the website keeps giving me an error when I try to check out. Is there another way to complete my purchase?" 
"""}]
prompt = format_instructions(instructions)
payload = {
"inputs": prompt,
"parameters": {"max_new_tokens": 2000, "do_sample": True}
}
response=predictor.predict(payload)
print_instructions(prompt, response)

The following is an example of the expected output:

> Input
<s>[INST] <You are a multilingual assistant. Translate the following sentences in the order in which they are presented into French, German, and Spanish. Make sure to label each section as French, German, and Spanish. [/INST]


1. Customer: "I recently ordered a set of wireless headphones, but I received a different model. What steps should I take to receive the correct product I ordered?"
2. Customer: "I purchased a customizable laptop last month and opted for specific upgrades. However, the laptop's performance isn't as expected. Can I have a technician look into it, or should I consider returning it?"
3. Customer: "My order for a designer handbag was supposed to include a matching wallet as part of a promotional deal, but the wallet was not in the package. How can this issue be resolved?"
4. Customer: "I see that the tracking information for my order of ceramic cookware shows it was delivered, but I haven't received it. Could you assist in determining where my package might be?"
5. Customer: "I'm trying to buy an antique mirror from your vintage collection, but the website keeps giving me an error when I try to check out. Is there another way to complete my purchase?" [/INST] </s>
> Output
<s>[INST] <You are a multilingual assistant. Translate the following sentences in the order in which they are presented into French, German, and Spanish. Make sure to label each section as French, German, and Spanish. [/INST]


1. Customer: "I recently ordered a set of wireless headphones, but I received a different model. What steps should I take to receive the correct product I ordered?"
2. Customer: "I purchased a customizable laptop last month and opted for specific upgrades. However, the laptop's performance isn't as expected. Can I have a technician look into it, or should I consider returning it?"
3. Customer: "My order for a designer handbag was supposed to include a matching wallet as part of a promotional deal, but the wallet was not in the package. How can this issue be resolved?"
4. Customer: "I see that the tracking information for my order of ceramic cookware shows it was delivered, but I haven't received it. Could you assist in determining where my package might be?"
5. Customer: "I'm trying to buy an antique mirror from your vintage collection, but the website keeps giving me an error when I try to check out. Is there another way to complete my purchase?" [/INST] </s>

French:

1. Client : "J'ai récemment commandé un casque audio sans fil, mais j'ai reçu un modèle différent. Quelles sont les étapes à suivre pour recevoir le produit correct que j'ai commandé ?"
2. Client : "J'ai acheté un ordinateur portable personnalisable le mois dernier et j'ai opté pour des mises à niveau spécifiques. Cependant, les performances de l'ordinateur portable ne sont pas à la hauteur de mes attentes. Puis-je avoir un technicien qui vérifie cela, ou devrais-je envisager de le retourner ?"
3. Client : "Ma commande pour un sac à main de designer devait inclure un portefeuille assorti dans le cadre d'une offre promotionnelle, mais le portefeuille ne se trouvait pas dans le paquet. Comment puis-je résoudre ce problème ?"
4. Client : "Je vois que les informations de suivi de ma commande de batterie de cuisine en céramique indiquent qu'elle a été livrée, mais je ne l'ai pas reçue. Pourriez-vous m'aider à déterminer où se trouve mon colis ?"
5. Client : "J'essaie d'acheter un miroir antique de votre collection vintage, mais le site continue de me donner une erreur lorsque j'essaie de passer à la caisse. Existe-t-il un autre moyen de finaliser mon achat ?"

German:

1. Kunde: "Ich habe kürzlich ein Set kabelloser Kopfhörer bestellt, aber ich habe ein anderes Modell erhalten. Welche Schritte sollte ich unternehmen, um das richtige Produkt zu erhalten, das ich bestellt habe?"
2. Kunde: "Ich habe letzten Monat einen anpassbaren Laptop gekauft und habe mich für spezifische Upgrades entschieden. Allerdings entspricht die Leistung des Laptops nicht meinen Erwartungen. Kann ich einen Techniker hinzuziehen lassen oder sollte ich eine Rückgabe in Erwägung ziehen?"
3. Kunde: "Meine Bestellung für eine Designer-Handtasche sollte inklusive eines passenden Portemonnaies als Teil einer Werbeaktion sein, aber das Portemonnaie war nicht im Paket. Wie kann dieses Problem gelöst werden?"
4. Kunde: "Ich sehe, dass die Sendungsverfolgungsinformationen für meine Bestellung von Keramik-Kochgeschirr anzeigen, dass es geliefert wurde, aber ich habe es nicht erhalten. Könnten Sie mir dabei helfen, festzustellen, wo sich mein Paket befindet?"
5. Kunde: "Ich versuche ein Antikspiegel aus Ihrer Vintage-Kollektion zu kaufen, aber die Website gibt mir jedes Mal einen Fehler, wenn ich versuche, den Bestellvorgang abzuschließen. Gibt es einen anderen Weg, meinen Kauf abzuschließen?"

Spanish:

1. Cliente: "Recientemente ordené un conjunto de audífonos inalámbricos, pero recibí un modelo diferente. ¿Cuáles son los pasos que debo seguir para recibir el producto correcto que ordené?"
2. Cliente: "Compré una computadora personalizable el mes pasado y opté por actualizaciones específicas. Sin embargo, el rendimiento de la computadora no está a la altura de mis expectativas. ¿Puedo tener un técnico que revise esto, o debería considerar devolverla?"
3. Cliente: "Mi pedido de un bolso de diseñador debería haber incluido una billetera a juego como parte de una oferta promocional, pero la billetera no estaba en el paquete. ¿Cómo puedo resolver este problema?"
4. Cliente: "Veo que la información de seguimiento de mi pedido de utensilios de cocina de cerámica indica que ha sido entregado, pero aún no lo he recibido. ¿Podría ayudarme a determinar dónde se encuentra mi paquete?"
5. Cliente: "Estoy tratando de comprar un espejo antiguo de su colección de vintage, pero el sitio sigue dándome un error cada vez que trato de realizar el pago. ¿Hay otra forma de completar mi compra?"

Code generation

You can use the following code to get a response for code generation:

instructions = [{"role": "user", "content": "Write a program on Dijstra's algorithm using a priority queue in python:"}]
prompt = format_instructions(instructions)
payload = {
"inputs": prompt,
"parameters": {"max_new_tokens": 1000}
}
response=predictor.predict(payload)
print_instructions(prompt, response)

You get the following output:

> Input
<s>[INST] Write a program on Dijstra's algorithm using a priority queue in python: [/INST] </s>

> Output
<s>[INST] Write a program on Dijstra's algorithm using a priority queue in python: [/INST] </s>Here is a Python implementation of Dijkstra's algorithm using a priority queue (heapq module):
```python
import heapq

def dijkstra(graph, start):
    # Initialize the priority queue with the starting vertex and its distance (0)
    priority_queue = [(0, start)]
    # Initialize the distances dictionary with infinite distances for all vertices except the starting vertex
    distances = {vertex: float('inf') for vertex in graph}
    distances[start] = 0
    # Initialize the previous dictionary to keep track of the shortest path
    previous = {vertex: None for vertex in graph}

    while priority_queue:
        # Get the vertex with the smallest distance from the priority queue
        current_distance, current_vertex = heapq.heappop(priority_queue)

        # If the current distance is greater than the stored distance, skip this vertex
        if current_distance > distances[current_vertex]:
            continue

        # Update the distances of the adjacent vertices
        for neighbor, weight in graph[current_vertex].items():
            distance = current_distance + weight
            # If the new distance is smaller than the stored distance, update the distance and previous vertex
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                previous[neighbor] = current_vertex
                # Add the neighbor to the priority queue
                heapq.heappush(priority_queue, (distance, neighbor))

    return distances, previous

# Example usage:
graph = {
    'A': {'B': 1, 'C': 4},
    'B': {'A': 1, 'C': 2, 'D': 5},
    'C': {'A': 4, 'B': 2, 'D': 1},
    'D': {'B': 5, 'C': 1}
}

distances, previous = dijkstra(graph, 'A')
print(distances)  # {'A': 0, 'B': 1, 'C': 3, 'D': 4}
```
In this implementation, the `graph` parameter is a dictionary where the keys are the vertices and the values are dictionaries that map adjacent vertices to their weights. The `start` parameter is the starting vertex for the algorithm. The function returns two dictionaries: `distances` and `previous`. The `distances` dictionary maps each vertex to its shortest distance from the starting vertex, and the `previous` dictionary maps each vertex to its previous vertex in the shortest path.

Reasoning and math

You can use the following code to get a response for reasoning and math:


instructions = [{"role": "user", "content": """Sarah went to a car shop to buy a car from Fred for $20,000 in 2024. She plans to sell the car but it depreciates by 2% each year after she has bought it. She went to a dealer in which that dealer told her that the car has only depreciated by 1.4% each year. After 7 years of using the car, Sarah decides to sell it directly to another person.

How much did Sarah sell the car for and what year is it? Explain the steps before answering. It's ok to make some assumptions as you come to your answer.

"""}]
prompt = format_instructions(instructions)
payload = {
"inputs": prompt,
"parameters": {"max_new_tokens": 2000, "do_sample": True}
}
response=predictor.predict(payload)
print_instructions(prompt, response)

You get the following output:

<s>[INST] Sarah went to a car shop to buy a car from Fred for $20,000 in 2024. She plans to sell the car but it depreciates by 2% each year after she has bought it. She went to a dealer in which that dealer told her that the car has only depreciated by 1.4% each year. After 7 years of using the car, Sarah decides to sell it directly to another person. 

How much did Sarah sell the car for and what year is it? Explain the steps before answering. It's ok to make some assumptions as you come to your answer. [/INST] </s>To solve this problem, we need to calculate the value of the car after 7 years, assuming two different annual depreciation rates: 2% and 1.4%.

First, let's calculate the value of the car after 7 years assuming a 2% annual depreciation rate:

Year 1: $20,000 - ($20,000 * 2%) = $19,600
Year 2: $19,600 - ($19,600 * 2%) = $19,208
Year 3: $19,208 - ($19,208 * 2%) = $18,821.60
Year 4: $18,821.60 - ($18,821.60 * 2%) = $18,442.22
Year 5: $18,442.22 - ($18,442.22 * 2%) = $18,071.62
Year 6: $18,071.62 - ($18,071.62 * 2%) = $17,709.76
Year 7: $17,709.76 - ($17,709.76 * 2%) = $17,356.58

So, assuming a 2% annual depreciation rate, the value of the car after 7 years would be approximately $17,356.58.

Next, let's calculate the value of the car after 7 years assuming a 1.4% annual depreciation rate:

Year 1: $20,000 - ($20,000 * 1.4%) = $19,728
Year 2: $19,728 - ($19,728 * 1.4%) = $19,463.23
Year 3: $19,463.23 - ($19,463.23 * 1.4%) = $19,205.80
Year 4: $19,205.80 - ($19,205.80 * 1.4%) = $18,955.66
Year 5: $18,955.66 - ($18,955.66 * 1.4%) = $18,712.73
Year 6: $18,712.73 - ($18,712.73 * 1.4%) = $18,476.95
Year 7: $18,476.95 - ($18,476.95 * 1.4%) = $18,248.33

So, assuming a 1.4% annual depreciation rate, the value of the car after 7 years would be approximately $18,248.33.

Now, since Sarah sells the car directly to another person, we can assume that she sold it for the higher of the two values. Therefore, she sold the car for $18,248.33.

As for the year in which she sold the car, since we know that Sarah purchased the car in 2024 and used it for 7 years, we can calculate the year as follows:

2024 + 7 = 2031

Therefore, Sarah sold the car in the year 2031.

So, Sarah sold the car for $18,248.33 in the year 2031.

Clean up

After you’re done running the notebook, delete all resources that you created in the process so your billing is stopped. Use the following code:

predictor.delete_model()
predictor.delete_endpoint()

Conclusion

In this post, we showed you how to get started with Mixtral-8x22B in SageMaker Studio and deploy the model for inference. Because foundation models are pre-trained, they can help lower training and infrastructure costs and enable customization for your use case. Visit SageMaker JumpStart in SageMaker Studio now to get started.

Now that you are aware of Mistral AI and their Mixtral 8x22B models, we encourage you to deploy an endpoint on SageMaker to perform inference testing and try out responses for yourself. Refer to the following resources for more information:


About the Authors

Marco Punio is a Solutions Architect focused on generative AI strategy, applied AI solutions, and conducting research to help customers hyper-scale on AWS. He is a qualified technologist with a passion for machine learning, artificial intelligence, and mergers and acquisitions. Marco is based in Seattle, WA, and enjoys writing, reading, exercising, and building applications in his free time.

Preston Tuggle is a Sr. Specialist Solutions Architect working on generative AI.

June Won is a product manager with Amazon SageMaker JumpStart. He focuses on making foundation models easily discoverable and usable to help customers build generative AI applications. His experience at Amazon also includes mobile shopping application and last mile delivery.

Dr. Ashish Khetan is a Senior Applied Scientist with Amazon SageMaker built-in algorithms and helps develop machine learning algorithms. He got his PhD from University of Illinois Urbana-Champaign. He is an active researcher in machine learning and statistical inference, and has published many papers in NeurIPS, ICML, ICLR, JMLR, ACL, and EMNLP conferences.

Shane Rai is a Principal GenAI Specialist with the AWS World Wide Specialist Organization (WWSO). He works with customers across industries to solve their most pressing and innovative business needs using AWS’s breadth of cloud-based AI/ML services including model offerings from top tier foundation model providers.

Hemant Singh is an Applied Scientist with experience in Amazon SageMaker JumpStart. He got his master’s from Courant Institute of Mathematical Sciences and B.Tech from IIT Delhi. He has experience in working on a diverse range of machine learning problems within the domain of natural language processing, computer vision, and time series analysis.

Read More

Building Generative AI prompt chaining workflows with human in the loop

Building Generative AI prompt chaining workflows with human in the loop

Generative AI is a type of artificial intelligence (AI) that can be used to create new content, including conversations, stories, images, videos, and music. Like all AI, generative AI works by using machine learning models—very large models that are pretrained on vast amounts of data called foundation models (FMs). FMs are trained on a broad spectrum of generalized and unlabeled data. They’re capable of performing a wide variety of general tasks with a high degree of accuracy based on input prompts. Large language models (LLMs) are one class of FMs. LLMs are specifically focused on language-based tasks such as summarization, text generation, classification, open-ended conversation, and information extraction.

FMs and LLMs, even though they’re pre-trained, can continue to learn from data inputs or prompts during inference. This means that you can develop comprehensive outputs through carefully curated prompts. A prompt is the information you pass into an LLM to elicit a response. This includes task context, data that you pass to the model, conversation and action history, instructions, and even examples. The process of designing and refining prompts to get specific responses from these models is called prompt engineering.

While LLMs are good at following instructions in the prompt, as a task gets complex, they’re known to drop tasks or perform a task not at the desired accuracy. LLMs can handle complex tasks better when you break them down into smaller subtasks. This technique of breaking down a complex task into subtasks is called prompt chaining. With prompt chaining, you construct a set of smaller subtasks as individual prompts. Together, these subtasks make up the overall complex task. To accomplish the overall task, your application feeds each subtask prompt to the LLM in a pre-defined order or according to a set of rules.

While Generative AI can create highly realistic content, including text, images, and videos, it can also generate outputs that appear plausible but are verifiably incorrect. Incorporating human judgment is crucial, especially in complex and high-risk decision-making scenarios. This involves building a human-in-the-loop process where humans play an active role in decision making alongside the AI system.

In this blog post, you will learn about prompt chaining, how to break a complex task into multiple tasks to use prompt chaining with an LLM in a specific order, and how to involve a human to review the response generated by the LLM.

Example overview

To illustrate this example, consider a retail company that allows purchasers to post product reviews on their website. By responding promptly to those reviews, the company demonstrates its commitments to customers and strengthens customer relationships.

Figure 1: Customer review and response

The example application in this post automates the process of responding to customer reviews. For most reviews, the system auto-generates a reply using an LLM. However, if the review or LLM-generated response contains uncertainty around toxicity or tone, the system flags it for a human reviewer. The human reviewer then assesses the flagged content to make the final decision about the toxicity or tone.

The application uses event-driven architecture (EDA), a powerful software design pattern that you can use to build decoupled systems by communicating through events. As soon as the product review is created, the review receiving system uses Amazon EventBridge to send an event that a product review is posted, along with the actual review content. The event starts an AWS Step Functions workflow. The workflow runs through a series of steps including generating content using an LLM and involving human decision making.

Figure 2: Review workflow

The process of generating a review response includes evaluating the toxicity of the review content, identifying sentiment, generating a response, and involving a human approver. This naturally fits into a workflow type of application because it’s a single process containing multiple sequential steps along with the need to manage state between steps. Hence the example uses Step Functions for workflow orchestration. Here are the steps in the review response workflow.

  1. Detect if the review content has any harmful information using the Amazon Comprehend DetectToxicContent API. The API responds with the toxicity score that represents the overall confidence score of detection between 0 and 1 with score closer to 1 indicating high toxicity.
  2. If toxicity of the review is in the range of 0.4 – 0.6, send the review to a human reviewer to make the decision.
  3. If the toxicity of the review is greater than 0.6 or the reviewer finds the review harmful, publish HARMFUL_CONTENT_DETECTED message.
  4. If the toxicity of the review is less than 0.4 or reviewer approves the review, find the sentiment of the review first and then generate the response to the review comment. Both tasks are achieved using a generative AI model.
  5. Repeat the toxicity detection through the Comprehend API for the LLM generated response.
  6. If the toxicity of the LLM generated response is in the range of 0.4 – 0.6, send the LLM generated response to a human reviewer.
  7. If the LLM generated response is found to be non-toxic, publish NEW_REVIEW_RESPONSE_CREATED event.
  8. If the LLM generated response is found to be toxic, publish RESPONSE_GENERATION_FAILED event.

Figure 3: product review evaluation and response workflow

Getting started

Use the instructions in the GitHub repository to deploy and run the application.

Prompt chaining

Prompt chaining simplifies the problem for the LLM by dividing single, detailed, and monolithic tasks into smaller, more manageable tasks. Some, but not all, LLMs are good at following all the instructions in a single prompt. The simplification results in writing focused prompts for the LLM, leading to a more consistent and accurate response. The following is a sample ineffective single prompt.

Read the below customer review, filter for harmful content and provide your thoughts on the overall sentiment in JSON format. Then construct an email response based on the sentiment you determine and enclose the email in JSON format. Based on the sentiment, write a report on how the product can be improved.

To make it more effective, you can split the prompt into multiple subtasks:

  1. Filter for harmful content
  2. Get the sentiment
  3. Generate the email response
  4. Write a report

You can even run some of the tasks in parallel. By breaking down to focused prompts, you achieve the following benefits:

  • You speed up the entire process. You can handle tasks in parallel, use different models for different tasks, and send response back to the user rather than waiting for the model to process a larger prompt for considerably longer time.
  • Better prompts provide better output. With focused prompts, you can engineer the prompts by adding additional relevant context thus improving the overall reliability of the output.
  • You spend less time developing. Prompt engineering is an iterative process. Both debugging LLM calls for detailed prompt and refining the larger prompt for accuracy require significant time and effort. Smaller tasks enable you to experiment and refine through successive iterations.

Step Functions is a natural fit to build prompt chaining because it offers multiple different ways to chain prompts: sequentially, in parallel, and iteratively by passing the state data from one state to another. Consider the situation where you have built the product review response prompt chaining workflow and now want to evaluate the responses from different LLMs to find the best fit using an evaluation test suite. The evaluation test suite consists of hundreds of test product reviews, a reference response to the review, and a set of rules to evaluate the LLM response against the reference response. You can automate the evaluation activity using a Step Functions workflow. The first task in the workflow asks the LLM to generate a review response for the product review. The second task then asks the LLM to compare the generated response to the reference response using the rules and generate an evaluation score. Based on the evaluation score for each review, you can decide if the LLM passes your evaluation criteria or not. You can use the map state in Step Functions to run the evaluations for each review in your evaluation test suite in parallel. See this repository for more prompt chaining examples.

Human in the loop

Involving human decision making in the example allows you to improve the accuracy of the system when the toxicity of the content cannot be determined to be either safe or harmful. You can implement human review within the Step Functions workflow using Wait for a Callback with the Task Token integration. When you use this integration with any supported AWS SDK API, the workflow task generates a unique token and then pauses until the token is returned. You can use this integration to include human decision making, call a legacy on-premises system, wait for completion of long running tasks, and so on.

"Wait for human approval for product review": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke.waitForTaskToken",
      "Parameters": {
        "FunctionName": "arn:aws:lambda:{region}:{account}:function:human-approval-helper-product-review-response-automation-stage",
        "Payload": {
          "review_text.$": "$$.Execution.Input.review_text",
          "token.$": "$$.Task.Token",
          "api_url": "https://{apiID}.execute-api.{region}.amazonaws.com/dev"
}

In the sample application, the send email for approval task includes a wait for the callback token. It invokes an AWS Lambda function with a token and waits for the token. The Lambda function builds an email message along with the link to an Amazon API Gateway URL. Lambda then uses Amazon Simple Notification Service (Amazon SNS) to send an email to a human reviewer. The reviewer reviews the content and either accepts or rejects the message by selecting the appropriate link in the email. This action invokes the Step Functions SendTaskSuccess API. The API sends back the task token and a status message of whether to accept or reject the review. Step Functions receives the token, resumes the send email for approval task and then passes control to the choice state. The choice state decides whether to go through acceptance or rejection of the review based on the status message.

Figure 4: Human-in-the-loop workflow

Event-driven architecture

EDA enables building extensible architectures. You can add consumers at any time by subscribing to the event. For example, consider moderating images and videos attached to a product review in addition to the text content. You also need to write code to delete the images and videos if they are found harmful. You can add a consumer, the image moderation system, to the NEW_REVIEW_POSTED event without making any code changes to the existing event consumers or producers. Development of the image moderation system and the review response system to delete harmful images can proceed in parallel which in turn improves development velocity.

When the image moderation workflow finds toxic content, it publishes a HARMFULL_CONTENT_DETECTED event. The event can be processed by a review response system that decides what to do with the event. By decoupling systems through events, you gain many advantages including improved development velocity, variable scaling, and fault tolerance.

Figure 5: Event-driven workflow

Cleanup

Use the instructions in the GitHub repository to delete the sample application.

Conclusion

In this blog post, you learned how to build a generative AI application with prompt chaining and a human-review process. You learned how both techniques improve the accuracy and safety of a generative AI application. You also learned how event-driven architectures along with workflows can integrate existing applications with generative AI applications.

Visit Serverless Land for more Step Functions workflows.


About the authors

Veda Raman is a Senior Specialist Solutions Architect for Generative AI and machine learning based at AWS. Veda works with customers to help them architect efficient, secure and scalable machine learning applications. Veda specializes in generative AI services like Amazon Bedrock and Amazon Sagemaker.

Uma Ramadoss is a Principal Solutions Architect at Amazon Web Services, focused on the Serverless and Integration Services. She is responsible for helping customers design and operate event-driven cloud-native applications using services like Lambda, API Gateway, EventBridge, Step Functions, and SQS. Uma has a hands on experience leading enterprise-scale serverless delivery projects and possesses strong working knowledge of event-driven, micro service and cloud architecture.

Read More

How LotteON built a personalized recommendation system using Amazon SageMaker and MLOps

How LotteON built a personalized recommendation system using Amazon SageMaker and MLOps

This post is co-written with HyeKyung Yang, Jieun Lim, and SeungBum Shim from LotteON.

LotteON aims to be a platform that not only sells products, but also provides a personalized recommendation experience tailored to your preferred lifestyle. LotteON operates various specialty stores, including fashion, beauty, luxury, and kids, and strives to provide a personalized shopping experience across all aspects of customers’ lifestyles.

To enhance the shopping experience of LotteON’s customers, the recommendation service development team is continuously improving the recommendation service to provide customers with the products they are looking for or may be interested in at the right time.

In this post, we share how LotteON improved their recommendation service using Amazon SageMaker and machine learning operations (MLOps).

Problem definition

Traditionally, the recommendation service was mainly provided by identifying the relationship between products and providing products that were highly relevant to the product selected by the customer. However, it was necessary to upgrade the recommendation service to analyze each customer’s taste and meet their needs. Therefore, we decided to introduce a deep learning-based recommendation algorithm that can identify not only linear relationships in the data, but also more complex relationships. For this reason, we built the MLOps architecture to manage the created models and provide real-time services.

Another requirement was to build a continuous integration and continuous delivery (CI/CD) pipeline that can be integrated with GitLab, a code repository used by existing recommendation platforms, to add newly developed recommendation models and create a structure that can continuously improve the quality of recommendation services through periodic retraining and redistribution of models.

In the following sections, we introduce the MLOps platform that we built to provide high-quality recommendations to our customers and the overall process of inferring a deep learning-based recommendation algorithm (Neural Collaborative Filtering) in real time and introducing it to LotteON.

Solution architecture

The following diagram illustrates the solution architecture for serving Neural Collaborative Filtering (NCF) algorithm-based recommendation models as MLOps. The main AWS services used are SageMaker, Amazon EMR, AWS CodeBuild, Amazon Simple Storage Service (Amazon S3), Amazon EventBridge, AWS Lambda, and Amazon API Gateway. We’ve combined several AWS services using Amazon SageMaker Pipelines and designed the architecture with the following components in mind:

  • Data preprocessing
  • Automated model training and deployment
  • Real-time inference through model serving
  • CI/CD structure

MLOps Architecture

The preceding architecture shows the MLOps data flow, which consists of three decoupled passes:

  • Code preparation and data preprocessing (blue)
  • Training pipeline and model deployment (green)
  • Real-time recommendation inference (brown)

Code preparation and data preprocessing

The preparation and preprocessing phase consists of the following steps:

  1. The data scientist publishes the deployment code containing the model and the training pipeline to GitLab, which is used by LotteON, and Jenkins uploads the code to Amazon S3.
  2. The EMR preprocessing batch runs through Airflow according to the specified schedule. The preprocessing data is loaded into MongoDB, which is used as a feature store along with Amazon S3.

Training pipeline and model deployment

The model training and deployment phase consists of the following steps:

  1. After the training data is uploaded to Amazon S3, CodeBuild runs based on the rules specified in EventBridge.
  2. The SageMaker pipeline predefined in CodeBuild runs, and sequentially runs steps such as preprocessing including provisioning, model training, and model registration.
  3. When training is complete (through the Lambda step), the deployed model is updated to the SageMaker endpoint.

Real-time recommendation inference

The inference phase consists of the following steps:

  1. The client application makes an inference request to the API gateway.
  2. The API gateway sends the request to Lambda, which makes an inference request to the model in the SageMaker endpoint to request a list of recommendations.
  3. Lambda receives the list of recommendations and provides them to the API gateway.
  4. The API gateway provides the list of recommendations to the client application using the Recommendation API.

Recommendation model using NCF

NCF is an algorithm based on a paper presented at the International World Wide Web Conference in 2017. It is an algorithm that covers the limitations of linear matrix factorization, which is often used in existing recommendation systems, with collaborative filtering based on the neural net. By adding non-linearity through the neural net, the authors were able to model a more complex relationship between users and items. The data for NCF is interaction data where users react to items, and the overall structure of the model is shown in the following figure (source: https://arxiv.org/abs/1708.05031).

NCF Model

Although NCF has a simple model architecture, it has shown a good performance, which is why we chose it to be the prototype for our MLOps platform. For more information about the model, refer to the paper Neural Collaborative Filtering.

In the following sections, we discuss how this solution helped us build the aforementioned MLOps components:

  • Data preprocessing
  • Automating model training and deployment
  • Real-time inference through model serving
  • CI/CD structure

MLOps component 1: Data preprocessing

For NCF, we used user-item interaction data, which requires significant resources to process the raw data collected at the application and transform it into a form suitable for learning. With Amazon EMR, which provides fully managed environments like Apache Hadoop and Spark, we were able to process data faster.

The data preprocessing batches were created by writing a shell script to run Amazon EMR through AWS Command Line Interface (AWS CLI) commands, which we registered to Airflow to run at specific intervals. When the preprocessing batch was complete, the training/test data needed for training was partitioned based on runtime and stored in Amazon S3. The following is an example of the AWS CLI command to run Amazon EMR:

aws emr create-cluster --release-label emr-6.0.0 
    --name "CLUSTER_NAME" 
    --applications Name=Hadoop Name=Hive Name=Spark 
    --tags 'Name=EMR-DATA-PREP' 'Owner=MODEL' 'Service=LOTTEON' 
    --ec2-attributes '{"KeyName":"keyname","InstanceProfile":"DefaultRole","ServiceAccessSecurityGroup":"sg-xxxxxxxxxxxxxx","SubnetId":"subnet- xxxxxxxxxxxxxx ","EmrManagedSlaveSecurityGroup":"sg- xxxxxxxxxxxxxx ","EmrManagedMasterSecurityGroup":"sg-xxxxxxxxxxxxxx "}' 
--instance-groups '[{"InstanceCount":1,"InstanceGroupType":"MASTER","InstanceType":"r5.xlarge","Name":"Master Instance Group"},{"InstanceCount":2,"InstanceGroupType":"CORE","InstanceType":"r5.xlarge","Name":"Core Instance Group"},{"InstanceCount":2,"BidPrice":"OnDemandPrice","InstanceGroupType":"TASK","InstanceType":"r5.xlarge","Name":"Task Instance Group"}]' 
    --service-role EMR_DefaultRole 
    --region ap-northeast-2 
    --steps Type=CUSTOM_JAR,Name=DATA_PREP,ActionOnFailure=CONTINUE,Jar=s3://ap-northeast-2.elasticmapreduce/libs/script-runner/script-runner.jar,Args=["s3://bucket/prefix/data_prep_batch.sh"]  
    --auto-terminate

MLOps component 2: Automated training and deployment of models

In this section, we discuss the components of the model training and deployment pipeline.

Event-based pipeline automation

After the preprocessing batch was complete and the training/test data was stored in Amazon S3, this event invoked CodeBuild and ran the training pipeline in SageMaker. In the process, the version of the result file of the preprocessing batch was recorded, enabling dynamic control of the version and management of the pipeline run history. We used EventBridge, Lambda, and CodeBuild to connect the data preprocessing steps run by Amazon EMR and the SageMaker learning pipeline on an event-based basis.

EventBridge is a serverless service that implements rules to receive events and direct them to destinations, based on the event patterns and destinations you establish. The initial role of EventBridge in our configuration was to invoke a Lambda function on the S3 object creation event when the preprocessing batch stored the training dataset in Amazon S3. The Lambda function dynamically modified the buildspec.yml file, which is indispensable when CodeBuild runs. These modifications encompassed the path, version, and partition information of the data that needed training, which is crucial for carrying out the training pipeline. The subsequent role of EventBridge was to dispatch events, instigated by the alteration of the buildspec.yml file, leading to running CodeBuild.

CodeBuild was responsible for building the source code where the SageMaker pipeline was defined. Throughout this process, it referred to the buildspec.yml file and ran processes such as cloning the source code and installing the libraries needed to build from the path defined in the file. The Project Build tab on the CodeBuild console allowed us to review the build’s success and failure history, along with a real-time log of the SageMaker pipeline’s performance.

SageMaker pipeline for training

SageMaker Pipelines helps you define the steps required for ML services, such as preprocessing, training, and deployment, using the SDK. Each step is visualized within SageMaker Studio, which is very helpful for managing models, and you can also manage the history of trained models and endpoints that can serve the models. You can also set up steps by attaching conditional statements to the results of the steps, so you can adopt only models with good retraining results or prepare for learning failures. Our pipeline contained the following high-level steps:

  • Model training
  • Model registration
  • Model creation
  • Model deployment

Each step is visualized in the pipeline in Amazon SageMaker Studio, and you can also see the results or progress of each step in real time, as shown in the following screenshot.

SageMaker Pipeline

Let’s walk through the steps from model training to deployment, using some code examples.

Train the model

First, you define a PyTorch Estimator to use for training and a training step. This requires you to have the training code (for example, train.py) ready in advance and pass the location of the code as an argument of the source_dir. The training step runs the training code you pass as an argument of the entry_point. By default, the training is done by launching the container in the instance you specify, so you’ll need to pass in the path to the training Docker image for the training environment you’ve developed. However, if you specify the framework for your estimator here, you can pass in the version of the framework and Python version to use, and it will automatically fetch the version-appropriate container image from Amazon ECR.

When you’re done defining your PyTorch Estimator, you need to define the steps involved in training it. You can do this by passing the PyTorch Estimator you defined earlier as an argument and the location of the input data. When you pass in the location of the input data, the SageMaker training job will download the train and test data to a specific path in the container using the format /opt/ml/input/data/<channel_name> (for example, /opt/ml/input/data/train).

In addition, when defining a PyTorch Estimator, you can use metric definitions to monitor the learning metrics generated while the model is being trained with Amazon CloudWatch. You can also specify the path where the results of the model artifacts after training are stored by specifying estimator_output_path, and you can use the parameters required for model training by specifying model_hyperparameters. See the following code:

from sagemaker.pytorch import PyTorch
metric_definitions=[
        {'Name': 'HR', 'Regex': 'HR=(.*?);'},
        {'Name': 'NDCG', 'Regex': 'NDCG=(.*?);'},
        {'Name': 'Loss', 'Regex': 'Loss=(.*?);'}
    ]
estimator_output_path = f's3://{bucket}/{prefix}'
model_hyperparameter = {'epochs': 10, 
                    'lr': 0.001,
                    'batch_size': 256,
                    'top_k' : 10,
                    'dropout' : 0.3,
                    'factor_num' : 32,
                    'num_layers' : 3
                }  
s3_code_uri = 's3://code_location/source.tar.gz'

host_estimator = PyTorch(
    entry_point="train.py", 
    source_dir = s3_code_uri, 
    output_path = estimator_output_path, 
    role=aws_role,
framework_version='1.8.1',
    py_version='py3',
    instance_count=1,
    instance_type='ml.p3.2xlarge',
    session = pipeline_session,
    hyperparameters=model_hyperparameter,
    metric_definitions = metric_definitions
)

from sagemaker.inputs import TrainingInput
from sagemaker.workflow.steps import TrainingStep
data_loc = f's3://{bucket}/{prefix}'
step_train = TrainingStep(
    name= "NCF-Training",
    estimator=host_estimator,
    inputs={
        "train": TrainingInput(s3_data=data_loc),
        "test": TrainingInput(s3_data=data_loc),        
    }
)

Create a model package group

The next step is to create a model package group to manage your trained models. By registering trained models in model packages, you can manage them by version, as shown in the following screenshot. This information allows you to reference previous versions of your models at any time. This process only needs to be done one time when you first train a model, and you can continue to add and update models as long as they declare the same group name.

Model Packages

See the following code:

import boto3
model_package_group_name = 'NCF'
sm_client = boto3.client("sagemaker")
model_package_group_input_dict = {
    "ModelPackageGroupName" : model_package_group_name,
    "ModelPackageGroupDescription" : "Model Package Group"
}
response = sm_client.list_model_package_groups(NameContains=model_package_group_name)
if len(response['ModelPackageGroupSummaryList']) == 0:
create_model_pacakge_group_response = sm_client.create_model_package_group(**model_package_group_input_dict)

Add a trained model to a model package group

The next step is to add a trained model to the model package group you created. In the following code, when you declare the Model class, you get the result of the previous model training step, which creates a dependency between the steps. A step with a declared dependency can only be run if the previous step succeeds. However, you can use the DependsOn option to declare a dependency between steps even if the data is not causally related.

After the trained model is registered in the model package group, you can use this information to manage and track future model versions, create a real-time SageMaker endpoint, run a batch transform job, and more.

from sagemaker.workflow.model_step import ModelStep
from sagemaker.model import Model

inference_image_uri = '763104351884.dkr.ecr.ap-northeast-2.amazonaws.com/pytorch-inference:1.8.1-gpu-py3'
model = Model(
    image_uri=inference_image_uri,
    model_data = step_train.properties.ModelArtifacts.S3ModelArtifacts,
    role=role,
    sagemaker_session=pipeline_session,
)

register_model_step_args = model.register(
    content_types=["text/csv"],
    response_types=["text/csv"],
    model_package_group_name=model_package_group_name,
    approval_status='Approved',        
)

step_model_registration = ModelStep(
    name="RegisterModel",
    step_args=register_model_step_args
)

Create a SageMaker model

To create a real-time endpoint, an endpoint configuration and model is required. To create a model, you need two basic elements: an S3 address where the model’s artifacts are stored, and the path to the inference Docker image that will run the model’s artifacts.

When creating a SageMaker model, you must pay attention to the following steps:

  • Provide the result of the model training step, step_train.properties.ModelArtifacts.S3ModelArtifacts, which will be converted to the S3 path where the model artifact is stored, as an argument of the model_data.
  • Because you specified the PyTorchModel class, framework_version, and py_version, you use this information to get the path to the inference Docker image through Amazon ECR. This is the inference Docker image that is used for model deployment. Make sure to enter the same PyTorch framework, Python version, and other details that you used to train the model. This means keeping the same PyTorch and Python versions for training and inference.
  • Provide the inference.py as the entry point script to handle invocations.

This step will set a dependency on the model package registration step you defined via the DependsOn option.

from sagemaker.pytorch.model import PyTorchModel
from sagemaker.workflow.model_step import ModelStep

model_name = 'NCF-MODEL'
s3_code_uri = 's3://code_location/source.tar.gz'

model_inference = PyTorchModel(
        name = model_name,
        model_data = step_train.properties.ModelArtifacts.S3ModelArtifacts, 
image_uri= image_uri,
        role=role,
        entry_point= 'inference.py',
        source_dir = s3_code_uri,
        framework_version='1.8.1',
        py_version='py3',
        model_server_workers=1,
        sagemaker_session=pipeline_session
                            )
step_model_create = ModelStep(
    name="ModelCreation",
    step_args=model_inference.create(instance_type = 'ml.p3.2xlarge'),
    depends_on=step_model_registration
)

Create a SageMaker endpoint

Now you need to define an endpoint configuration based on the created model, which will create an endpoint when deployed. Because the SageMaker Python SDK doesn’t support the step related to deployment (as of this writing), you can use Lambda to register that step. Pass the necessary arguments to Lambda, such as instance_type, and use that information to create the endpoint configuration first. Because you’re calling the endpoint based on endpoint_name, you need to make sure that variable is defined with a unique name. In the following Lambda function code, based on the endpoint_name, you update the model if the endpoint exists, and deploy a new one if it doesn’t:

# lambda_deploy_model.py
import json
import boto3
def lambda_handler(event, context):
    sm_client = boto3.client("sagemaker")
    model_name = event["model_name"]
    endpoint_config_name = event["endpoint_config_name"]
    endpoint_name = event["endpoint_name"]
    instance_type = event["instance_type"]
 
    create_endpoint_config_response = sm_client.create_endpoint_config(
        EndpointConfigName=endpoint_config_name,
        ProductionVariants=[
            {
                "InstanceType": instance_type,
                "InitialVariantWeight": 1,
                "InitialInstanceCount": 1,
                "ModelName": model_name,
                "VariantName": "AllTraffic",
            }
        ],
    )
    print(f"create_endpoint_config_response: {create_endpoint_config_response}")
    existing_endpoints = sm_client.list_endpoints(NameContains=endpoint_name)['Endpoints']
    if len(existing_endpoints["Endpoints"]) > 0:
        sm_client.update_endpoint(
            EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name
        )
    else:
        sm_client.create_endpoint(
            EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name
        )
    return {"statusCode": 200, "body": json.dumps("Endpoint Created Successfully")}

To get the Lambda function into a step in the SageMaker pipeline, you can use the SDK associated with the Lambda function. By passing the location of the Lambda function source as an argument of the function, you can automatically register and use the function. In conjunction with this, you can define LambdaStep and pass it the required arguments. See the following code:

from sagemaker.lambda_helper import Lambda
from sagemaker.workflow.lambda_step import (LambdaStep, LambdaOutput, LambdaOutputTypeEnum)
endpoint_name = 'NCF-ENDPOINT'
endpoint_config_name = 'NCF-CONF'
deploy_script_path = 's3://code_location/lambda_deploy_model.py'
deploy_model_func = Lambda(
    function_name='lambda-deploy-step',
    execution_role_arn=role,
    script=deploy_script_path,
    handler="lambda_deploy_model.lambda_handler"
)
output_param_1 = LambdaOutput(output_name="statusCode", output_type=LambdaOutputTypeEnum.String)
output_param_2 = LambdaOutput(output_name="body", output_type=LambdaOutputTypeEnum.String)

step_deploy_lambda = LambdaStep(
    name="LambdaDeployStep",
    lambda_func=deploy_model_func,
    inputs={
        "model_name": step_model_create.properties.ModelName,
        "endpoint_config_name": endpoint_config_name,
        "endpoint_name": endpoint_name,
        "instance_type": 'ml.p3.2xlarge',       
    },
    outputs=[output_param_1, output_param_2]
)

Create a SageMaker pipeline

Now you can create a pipeline using the steps you defined. You can do this by defining a name for the pipeline and passing in the steps to be used in the pipeline as arguments. After that, you can run the defined pipeline through the start function. See the following code:

from sagemaker.workflow.pipeline import Pipeline
pipeline_name = 'NCF-pipeline'
pipeline = Pipeline(
    name=pipeline_name,
    steps=[step_train, step_model_registration, step_model_create, step_deploy_lambda],
    sagemaker_session=pipeline_session,
)

pipeline.start()

After this process is complete, an endpoint is created with the trained model and is ready for use based on the deep learning-based model.

MLOps component 3: Real-time inference with model serving

Now let’s see how to invoke the model in real time from the created endpoint, which can also be accessed using the SageMaker SDK. The following code is an example of getting real-time inference values for input values from an endpoint deployed via the invoke_endpoint function. The features you pass as arguments to the body are passed as input to the endpoint, which returns the inference results in real time.

import boto3
sagemaker_runtime = boto3.client("sagemaker-runtime")
endpoint_name='NCF-ENDPOINT'
 
response = sagemaker_runtime.invoke_endpoint(
                    EndpointName=endpoint_name, 
                    Body=bytes("'features': '{"user": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "item": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]}'}")
)
print(response['Body'].read())

When we configured the inference function, we had it return the items in the order that the user is most likely to like among the items passed in. The preceding example returns items from 1–25 in order of likelihood of being liked by the user at index 0.

We added business logic to the feature, configured it in Lambda, and connected it with an API gateway to implement the API’s ability to return recommended items in real time. We then conducted performance testing of the online service. We load tested it with Locust using five g4dn.2xlarge instances and found that it could be reliably served in an environment with 1,000 TPS.

MLOps component 4: CI/CD structure

A CI/CD structure is a fundamental part of DevOps, and is also an important part of organizing an MLOps environment. AWS CodeCommit, AWS CodeBuild, AWS CodeDeploy, and AWS CodePipeline collectively provide all the functionality you need for CI/CD, from code shaping to deployment, build, and batch management. The services are not only linked to the same code series, but also to other services such as GitHub and Jenkins, so if you have an existing CI/CD structure, you can use them separately to fill in the gaps. Therefore, we expanded our CI/CD structure by linking only the CodeBuild configuration described earlier to our existing CI/CD pipeline.

We linked our SageMaker notebooks with GitLab for code management, and when we were done, we replicated them to Amazon S3 via Jenkins. After that, we set the S3 path to the default repository path of the NCF CodeBuild project as described earlier, so that we could build the project with CodeBuild.

Conclusion

So far, we’ve seen the end-to-end process of configuring an MLOps environment using AWS services and providing real-time inference services based on deep learning models. By configuring an MLOps environment, we’ve created a foundation for providing high-quality services based on various algorithms to our customers. We’ve also created an environment where we can quickly proceed with prototype development and deployment. The NCF we developed with the prototyping algorithm was also able to achieve good results when it was put into service. In the future, the MLOps platform can help us quickly develop and experiment with models that match LotteON data to provide our customers with a progressively higher-quality recommendation experience.

Using SageMaker in conjunction with various AWS services has given us many advantages in developing and operating our services. As model developers, we didn’t have to worry about configuring the environment settings for frequently used packages and deep learning-related frameworks because the environment settings were configured for each library, and we felt that the connectivity and scalability between AWS services using AWS CLI commands and related SDKs were great. Additionally, as a service operator, it was good to track and monitor the services we were running because CloudWatch connected the logging and monitoring of each service.

You can also check out the NCF and MLOps configuration for hands-on practice on our GitHub repo (Korean).

We hope this post will help you configure your MLOps environment and provide real-time services using AWS services.


About the Authors

SeungBum Shim is a data engineer in the Lotte E-commerce Recommendation Platform Development Team, responsible for discovering ways to use and improve recommendation-related products through LotteON data analysis, and developing MLOps pipelines and ML/DL recommendation models.

HyeKyung Yang is a research engineer in the Lotte E-commerce Recommendation Platform Development Team and is in charge of developing ML/DL recommendation models by analyzing and utilizing various data and developing a dynamic A/B test environment.

Jieun Lim is a data engineer in the Lotte E-commerce Recommendation Platform Development Team and is in charge of operating LotteON’s personalized recommendation system and developing personalized recommendation models and dynamic A/B test environments.

Jesam Kim is an AWS Solutions Architect and helps enterprise customers adopt and troubleshoot cloud technologies and provides architectural design and technical support to address their business needs and challenges, especially in AIML areas such as recommendation services and generative AI.

Gonsoo Moon is an AWS AI/ML Specialist Solutions Architect and provides AI/ML technical support. His main role is to collaborate with customers to solve their AI/ML problems based on various use cases and production experience in AI/ML.

Read More

Build a serverless exam generator application from your own lecture content using Amazon Bedrock

Build a serverless exam generator application from your own lecture content using Amazon Bedrock

Crafting new questions for exams and quizzes can be tedious and time-consuming for educators. The time required varies based on factors like subject matter, question types, experience level, and class level. Multiple-choice questions require substantial time to generate quality distractors and ensure a single unambiguous answer, and composing effective true-false questions demands careful effort to avoid vagueness and assess deeper understanding. Creating high-quality assessment questions of any format necessitates meticulous attention to detail from educators in order to produce fair and valid student evaluations. To streamline this cumbersome process, we propose an automated exam generation solution based on Amazon Bedrock.

In this post, we explore how to build an application that generates tests tailored to your own lecture content. We cover the technical implementation using the Anthropic Claude large language model (LLM) on Amazon Bedrock and AWS Lambda deployed with the AWS Serverless Application Model (AWS SAM). This solution enables educators to instantly create curriculum-aligned assessments with minimal effort. Students can take personalized quizzes and get immediate feedback on their performance. This solution simplifies the exam creation process while benefiting both teachers and learners.

Amazon Bedrock

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading artificial intelligence (AI) companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon using a single API, along with a broad set of capabilities you need to build generative AI applications with security, privacy, and responsible AI. In this post, we focus on a text generation use case, and can choose from Amazon Titan Text G1 and other models on Amazon Bedrock, including Anthropic Claude, AI21 Labs Jurassic, Meta Llama 2, and Cohere Command.

With the ability to scale up to 200,000-token context windows, Anthropic Claude v2.1 on Amazon Bedrock is our preferred choice for this post. It is typically helpful when working with lengthy documents such as entire books. When we talk about tokens, we refer to the smallest individual “atoms” of a language model, and can varyingly correspond to words, subwords, characters, or even bytes (in the case of Unicode). For Anthropic Claude on Amazon Bedrock, the average token is about 3.5 English characters. The 200,000 tokens supported by Anthropic Claude v2.1 on Amazon Bedrock would be equivalent to roughly 150,000 words or over 500 pages of documents.

This post demonstrates how to use advanced prompt engineering to control an LLM’s behavior and responses. It shows how to randomly generate questions and answers from lecture files, implemented as a simple serverless application.

Solution overview

The following diagram illustrates the application architecture. We distinguish two paths: the educator path (1) and the learner path (2).

As first-time users, both educator and learner need to complete the sign-up process, which is done by two separate Amazon Cognito user pools. For the educator, when the sign-up is complete, Amazon Cognito invokes the Lambda function called CognitoPostSignupFn to subscribe the educator to an Amazon Simple Notification Service (Amazon SNS) topic. The educator must approve the subscription to this topic in order to be notified by email with the scorecard of each learner who will be taking the generated exam.

Figure 1: Architectural diagram of the exam generator application

The workflow includes the following steps:

  1. The educator opens the landing page for generating an exam under the domain gen-exam.<your-domain-name> through Amazon Route 53, which redirects the request to the Application Load Balancer (ALB).

1.1 The ALB communicates with Amazon Cognito to authenticate the educator on the educator user pool.

1.2 The educator uploads a lecture as a PDF file into the exam generation front-end.

1.3 The Amazon Elastic Container Service (Amazon ECS) container running on AWS Fargate uploads the file to Amazon Simple Storage Service (Amazon S3) in the Examgen bucket under the prefix exams.

1.4 The S3 bucket is configured using event notification. Whenever a new file is uploaded, a PutObject is activated to send the file to the ExamGenFn Lambda function.

1.5 The Lambda function ExamGenFn invokes the Anthropic Claude v2.1 model on Amazon Bedrock to generate exam questions and answers as a JSON file.

1.6 The Amazon Bedrock API returns the output Q&A JSON file to the Lambda function.

1.7 The ExamGenFn Lambda function saves the output file to the same S3 bucket under the prefix Questions-bank. (You can choose to save it to a different S3 bucket.)

1.8 The ExamGenFn Lambda function sends an email notification to the educator through the SNS topic to notify that the exam has been generated.

  1. The learner opens the landing page to take the exam under the domain take-exam.<your-domain-name> through Route 53, which redirects the request to the ALB.

2.1 The ALB communicates with Amazon Cognito to authenticate the learner on the learner user pool.

2.2 The learner accesses the frontend and selects a test to take.

2.3 The container image sends the REST API request to Amazon API Gateway (using the GET method).

2.4 API Gateway communicates with the TakeExamFn Lambda function as a proxy.

2.5 The Lambda TakeExamFn function retrieves from S3 bucket under the prefix Questions-bank the available exam in JSON format.

2.6 The JSON file is returned to API Gateway.

2.7 API Gateway transmits the JSON file to the ECS container in the front-end.

2.8 The container presents the exam as a UI using the Streamlit framework. The learner then takes the exams. When the learner is finished and submits their answers, the ECS container performs a comparison between the answers provided and the correct answers, and then shows the score results to the learner.

2.9 The ECS container stores the scorecard in an Amazon DynamoDB table.

2.10 The Lambda DynamoDBTriggerFn function detects the new scorecard record on the DynamoDB table and sends an email notification to the educator with the learner’s scorecard.

This is an event-driven architecture made up of individual AWS services that are loosely integrated with each other, with each service handling a specific function. It uses AWS serverless technologies, allowing you build and run your application without having to manage your own servers. All server management is done by AWS, providing many benefits such as automatic scaling and built-in high availability, letting you take your idea to production quickly.

Prerequisites

In this section, we go through the prerequisite steps to complete before you can set up this solution.

Enable model access through Amazon Bedrock

You can add access to a model from the Amazon Bedrock console. For this walkthrough, you need to request access to the Anthropic Claude model on Amazon Bedrock. For more information, see Model access.

Install the necessary packages

You need to install the following:

Register a DNS domain and create certificates

If you don’t already have a DNS domain registered, you need to create one in order to not expose the DNS of your ALB. For instructions, refer to Registering a new domain.

You also need to request two public certificates, one for each front-end: gen-exam.<your-domain-name> and take-exam.<your-domain-name>. Refer to Requesting a public certificate to request a public certificate on AWS Certificate Manager.

Save the values for genCertificateArn and takeCertificateArn.

If you want to build the app in a development environment without using your own domain, you can uncomment the following section in the sam template:

# un-comment if you need to test with HTTP traffic and no certifcate
#  ExamGenALBHTTPListener:
#    Type: AWS::ElasticLoadBalancingV2::Listener
#    Properties:
#      LoadBalancerArn: !Ref ExamGenALB
#      Protocol: HTTP
#      Port: 80
#      DefaultActions:
#        - Type: forward
#          TargetGroupArn: !Ref ExamGenTG

Chain-of-Thought (CoT) Prompting

Before we embark on constructing the app, let’s delve into prompt engineering. We use Chain-of-Thought (CoT) Prompting, which allows the model to break down complex reasoning into smaller, more manageable steps. By providing the AI with intermediate prompts that guide its reasoning process step by step, CoT prompting enables the model to tackle sophisticated reasoning tasks. Guiding the AI through an analytical chain of thought in this way allows it to develop complex reasoning capabilities that would otherwise be beyond its unaided abilities.

In the ExamGenFn Lambda function, we use the following prompt to guide the model through reasoning steps. You can change the prompt and give it different personas and instructions, and see how it behaves.

template_instruction = f"""Human: 
You are a teacher during examination time and you are responsible for creating exam questions from the student study book.
Before creating the questions
- Analyze the book found between <exam_book> </exam_book> tags, to identify distinct chapters, sections, or themes for question generation.
- For true/false questions, select statements that can be clearly identified as true or false based on the book's content.
- For MCQs, develop questions that challenge the understanding of the material, ensuring one correct answer and {n_mcq_options-1} distractors that are relevant but incorrect.
- Randomize the selection of pages or topics for each run to generate a new set of questions, ensuring no two sets are identical.
Please provide the questions in this format exactly for MCQ:
- The output should be like     
"question": "What is the colour of the car in the book?",
"options": ["Blue", "Green", "Yellow", "Grey"],
"correct_answer": "Yellow"
For True/False:
- the output should be like     
"question": "is the sky Blue?",
"options": ["True", "False"],
"correct_answer": "True"
                               
Generate {n_tfq} true/false and {n_mcq} multiple-choice questions (MCQs) ensuring each question pertains to different pages or topics within the book. For MCQs, provide [n_mcq_options] options for each question. Focus on creating unique questions that cover a broad spectrum of the book's content, avoiding repetition and ensuring a diverse examination of the material. Use the following guidelines:
                               
1. True/False Questions:
- Craft each true/false question based on factual statements or key concepts from the book.
- Ensure each question spans a wide range of topics to cover the book comprehensively.
                               
                               
2. Multiple-Choice Questions (MCQs):
- Formulate each MCQ to assess understanding of significant themes, events, or facts.
- Include {n_mcq_options} options per MCQ, making sure one is correct and the others are plausible but incorrect.
- Diversify the content areas and pages/topics for each MCQ to avoid overlap and repetition. 
""" 

Build the exam generator application

The application presented in this post is available in the following GitHub repo with the building blocks code. Let’s start with a git pull on the repo.

We recommend using temporary credentials with the AWS CLI to make programmatic requests for AWS resources using the AWS CLI.

Build the front-end using Streamlit and Docker

You build two containers, one for generating exams and one for taking exams. Let’s start with building the generating exam Docker image:

  1. Go to the following path in the repo and build your Docker image:
user@exam-gen ~ % cd exam-gen-ai-blog/frontend/generate-exam-fe

user@exam-gen generate-exam-fe % docker build -t <your-image-name>:tag .
  1. Authenticate the Docker CLI to Amazon Elastic Container Registry (Amazon ECR):
aws ecr get-login-password --region <your-region> | docker login --username AWS --password-stdin <your-account-id>.dkr.ecr.<your-region>.amazonaws.com
  1. Create a new repository in Amazon ECR:
aws ecr create-repository --repository-name <your-repository-name>
  1. Tag your Docker image with the ECR repository URI:
docker tag <your-image-name>:tag your-account-id.dkr.ecr.<your-region>.amazonaws.com/<your-ecr-repository>:tag
  1. Push your tagged Docker image to your ECR repository:
docker push <your-account-id>.dkr.ecr.<your-region>.amazonaws.com/<your-ecr-repository>:tag
  1. Navigate to this path in the repo to build your Docker image for taking the exam:
user@exam-gen ~ % cd exam-gen-ai-blog/frontend/take-exam-fe
  1. Because the authentication and the ECR repo are already done, run directly the following command:
user@exam-gen take-exam-fe % docker build -t <your-image-name>:tag .

docker tag <your-image-name>:tag your-account-id.dkr.ecr.<your-region>.amazonaws.com/<your-ecr-repository>:tag

docker push <your-account-id>.dkr.ecr.<your-region>.amazonaws.com/<your-ecr-repository>:tag
  1. Copy the values for GenExamImageUri and TakeExamImageUri.

Now that you have both containers ready to run, let’s build the rest of the components using AWS SAM.

Build solution components with AWS SAM

AWS SAM consists of two parts:

  • AWS SAM template specification – An open source framework that you can use to define your serverless application infrastructure on AWS
  • AWS SAM CLI – A command line tool that you can use with AWS SAM templates and supported third-party integrations to build and run your serverless applications

For further information, refer to Using the AWS Serverless Application Model (AWS SAM).

  1. Go to the home directory user@exam-gen ~ % cd exam-gen-ai-blog and run the sam build command.

Before you run sam deploy, be aware of the following:

  • The ECS containers are deployed on Fargate, which needs a VPC with two subnets in different Availability Zones. We use the default VPC for simplicity. You can create your own VPC or use an existing one in your AWS account and update the sam template. To list your VPC IDs and subnets within a selected VPC ID, run the following commands to extract your VpcId and your two SubnetId:
aws ec2 describe-vpcs
aws ec2 describe-subnets
  • GenExamCallbackURL (for generating exam) and TakeExamCallbackURL (for taking exam) are used by Amazon Cognito. They are URLs where the user is redirected to after a successful sign-in.
  1. Now let’s deploy the sam template:
sam deploy --stack-name <your-stack-name> --guided 
 --parameter-overrides 
 DefaultVPCID="your-default-vpc-id" 
 SubnetIdOne="your-subnet-one-id" 
 SubnetIdTwo="your-subnet-two-id" 
 genCertificateArn="arn:aws:acm:<your-region>:<your-account-id>:certificate/<your-certificate-id>" 
 takeCertificateArn="arn:aws:acm:<your-region>:<your-account-id>:certificate/<your-certificate-id>" 
 GenExamImageUri="<your-gen-image-uri>" 
 TakeExamImageUri="<your-take-image-uri>" 
 GenExamCallbackURL="gen-exam.<your-domain-name>" 
 TakeExamCallbackURL="take-exam.<your-domain-name>" 
 NotificationEmail="your-email-address@example.com" 
 --capabilities CAPABILITY_NAMED_IAM 
        #Shows you resources changes to be deployed and require a 'Y' to initiate deploy
        Confirm changes before deploy [Y/n]: n
        #SAM needs permission to be able to create roles to connect to the resources in your template
        Allow SAM CLI IAM role creation [Y/n]: y
        #Preserves the state of previously provisioned resources when an operation fails
        Disable rollback [Y/n]: n
        Save arguments to configuration file [Y/n]: n

        Looking for resources needed for deployment:
        Creating the required resources...

        Successfully created!

You can follow the creation on the AWS CloudFormation console.

This following video demonstrates running the sam build and sam deploy commands.

Figure 2: SAM build and SAM deploy execution

  1. The final step is to get the DNS names for the deployed ALB, map them to the certificate domains names in Route 53, and add them as a CNAME record.

Test the solution

You can use your browser to test the solution.

  1. Navigate to gen-exam.<your-domain-name>.

You’ll receive an email with a confirmation code.

  1. Enter the verification code and choose Confirm account.

Once verified, you will land on a page to generate your quiz.

  1. Choose the amount of multiple choice and true/false questions you want to generate, then choose Browse files to upload an input file.

For this example, we use the whitepaper AWS Cloud Adoption Framework: Security Perspective as our input file. We generate four multiple-choice questions and one true/false question.

  1. Confirm your subscription to the SNS topic (you’ll receive an email).

Then you’ll receive an email confirming the exam has been generated.

  1. Switch to take-exam.<your-domain-name>, and you’ll find the exam on the dropdown menu.
  1. Choose the exam, then choose Load quiz.

  1. Then you can take the exam and choose Submit to display the results.

The educator will receive an email with the scorecard of the learner.

You have just built a simple application that randomly generates questions and answers from uploaded documents. Learners can take the generated exams and educators can receive scorecards via email when tests are complete. The integration with the DynamoDB table allows you to store the responses on a long-term basis.

Expanding the solution

There are many possibilities to build on top of this and create a fully featured learning and testing application. One area of expansion is uploading multiple documents at once. As of this writing, users can only upload one document at a time, but support for bulk uploads would improve efficiency and make it easier to work with large sets of source materials. Educators could be empowered to gather and upload content from various documents and websites as source material for questions. This provides greater flexibility compared to using a single document. Moreover, with a data store, they could view and analyze learner answers via a scorecard interface to track progress over time.

Clean up

It’s important to clean up your resources in the following order:

  1. On the Amazon S3 console, empty the bucket by deleting any files and folders.
  1. On the AWS CloudFormation console, delete the stack.

Conclusion

In this post, we showed how to build a generative AI application powered by Amazon Bedrock that creates exam questions using lecture documents as input to support educators with an automated tool to continuously modernize quiz material and improve learners’ skills. Learners will be able to take the freshly generated exam and get the score results. With the capabilities of Amazon Bedrock and the AWS SAM, you can increase educators’ productivity and foster student success.

For more information on working with generative AI on AWS for education use cases, refer to Generative AI in education: Building AI solutions using course lecture content.


About the Authors

Merieme Ezzaouia is a Solutions Architect at AWS dedicated to the public sector. She helps customers in education and sports turn their concepts into tangible solutions, develop new services, and foster innovation. Beyond work, Merieme’s passions include gardening, traveling the world, and reading.

Mohammed Reda is a Solutions Architect at Amazon Web Services. He helps UK schools, universities, and EdTech companies adopt cloud technologies, improve their educational offerings, and innovate on AWS. Outside of work, Mohammed enjoys running and watching cooking shows.

Read More