Supercharge your development with Claude Code and Amazon Bedrock prompt caching

Supercharge your development with Claude Code and Amazon Bedrock prompt caching

Prompt caching in Amazon Bedrock is now generally available, delivering performance and cost benefits for agentic AI applications. Coding assistants that process large codebases represent an ideal use case for prompt caching.

In this post, we’ll explore how to combine Amazon Bedrock prompt caching with Claude Code—a coding agent released by Anthropic that is now generally available. This powerful combination transforms your development workflow by delivering lightning-fast responses from reducing inference response latency, as well as lowering input token costs. You’ll discover how this makes AI-assisted coding not just more efficient, but also more economically viable for everyday development tasks.

What is Claude Code?

Claude Code

Claude Code is Anthropic’s AI coding assistant powered by Claude Sonnet 4. It operates directly in your terminal, your favorite IDEs such as VS Code and Jetbrains, and in the background with Claude Code SDK, understanding your project context and taking actions without requiring you to manually manipulate and add generated code to a project. Unlike traditional coding assistants, Claude Code can:

  • Write code and fix bugs spanning multiple files across your codebase
  •  Answer questions about your code’s architecture and logic
  • Execute and fix tests, linting, and other commands
  • Search through git history, resolve merge conflicts, and create commits and PRs
  • Operate all of your other command line tools, like AWS CLI, Terraform, and k8s

The most compelling aspect of Claude Code is how it integrates into your existing workflow. You simply point it to your project directory and interact with it using natural language commands. Claude Code also supports Model Context Protocol (MCP), allowing you to connect external tools and data sources directly to your terminal and customize its AI capabilities with your context.

To learn more, see Claude Code tutorials and Claude Code: Best practices for agentic coding.

Amazon Bedrock prompt caching for AI-assisted development

The prompt caching feature of Amazon Bedrock dramatically reduces both response times and costs when working with large context. Here’s how it works: When prompt caching is enabled, your agentic AI application (such as Claude Code) inserts cache checkpoint markers at specific points in your prompts. Amazon Bedrock then interprets these application-defined markers and creates cache checkpoints that save the entire model state after processing the preceding text. On subsequent requests, if your prompt reuses that same prefix, the model loads the cached state instead of recomputing.

In the context of Claude Code specifically, this means the application intelligently manages these cache points when processing your codebase, allowing Claude to “remember” previously analyzed code without incurring the full computational and financial cost of reprocessing it. When you ask multiple questions about the same code or iteratively refine solutions, Claude Code leverages these cache checkpoints to deliver faster responses while dramatically reducing token consumption and associated costs.

To learn more, see documentation for Amazon Bedrock prompt caching.

Solution overview: Try Claude Code with Amazon Bedrock prompt caching

Prerequisites

Prompt caching is automatically turned on for supported models and AWS Regions.

Setting up Claude Code with Claude Sonnet 4 on Amazon Bedrock

After configuring AWS CLI with your credentials, follow these steps:

  1. In your terminal, execute the following commands:
    # Install Claude Code
    npm install -g @anthropic-ai/claude-code
    
    # Configure for Amazon Bedrock
    export CLAUDE_CODE_USE_BEDROCK=1
    export ANTHROPIC_MODEL='us.anthropic.claude-sonnet-4-20250514-v1:0'
    export ANTHROPIC_SMALL_FAST_MODEL='us.anthropic.claude-3-5-haiku-20241022-v1:0'
    
    # Launch Claude Code
    claude
  2. Verify that Claude Code is running by checking for the Welcome to Claude Code! message in your terminal.
    Terminal - Welcome to Claude Code

To learn more about how to configure Claude Code for Amazon Bedrock, see Connect to Amazon Bedrock.

Getting started with prompt caching

To get started, let’s experiment with a simple prompt.

  1. In Claude Code, execute the prompt:
    build a basic text-based calculator
  2. Review and respond to Claude Code’s requests:
    1. When prompted with questions like Do you want to create calculator.py? select 1. Yes to continue.
      Example question:

      Do you want to create calculator.py?
      
      1. Yes
      2. Yes, and don't ask again for this session (shift+tab)
      3. No, and tell Claude what to do differently (esc)
    2. Carefully review each request before approving to maintain security.
  3. After Claude Code generates the calculator application, it will display execution instructions such as:
    Run the calculator with: python3 calculator.py
  4. Test the application by executing the instructed command above. Then, follow the on-screen prompts to perform calculations.

Claude Code automatically enables prompt caching to optimize performance and costs. To monitor token usage and costs, use the /cost command. You will receive a detailed breakdown similar to this:

/cost 
  ⎿  Total cost:            $0.0827
  ⎿  Total duration (API):  26.3s
  ⎿  Total duration (wall): 42.3s
  ⎿  Total code changes:    62 lines added, 0 lines removed

This output provides valuable insights into your session’s resource consumption, including total cost, API processing time, wall clock time, and code modifications.

Getting started with prompt caching

To understand the benefits of prompt caching, let’s try the same prompt without prompt caching for comparison:

  1. In the terminal, exit Claude Code by pressing Ctrl+C.
  2. To create a new project directory, run the command:
    mkdir test-disable-prompt-caching; cd test-disable-prompt-caching 
  3. Disable prompt caching by setting an environment variable:
    export DISABLE_PROMPT_CACHING=1
  4. Execute claude to run Claude Code.
  5. Verify prompt caching is disabled by checking the terminal output. You should see Prompt caching: off under the Overrides (via env) section.
  6. Execute the prompt:
    build a basic text-based calculator
  7. After completion, execute /cost to view resource usage.

You will see a higher resource consumption compared to when prompt caching is enabled, even with a simple prompt:

/cost 
  ⎿  Total cost:            $0.1029
  ⎿  Total duration (API):  32s
  ⎿  Total duration (wall): 1m 17.5s
  ⎿  Total code changes:    57 lines added, 0 lines removed

Without prompt caching, each interaction incurs the full cost of processing your context.

Cleanup

To re-enable prompt caching, exit Claude Code and run unset DISABLE_PROMPT_CACHING before restarting Claude. Claude Code does not incur cost when you are not using it.

Prompt caching for complex codebases and efficient iteration

When working with complex codebases, prompt caching delivers significantly greater benefits than with simple prompts. For an illustrative example, consider the initial prompt: Develop a game similar to Pac-Man. This initial prompt generates the foundational project structure and files. As you refine the application with prompts such as Implement unique chase patterns for different ghosts, the coding agent must comprehend your entire codebase to be able to make targeted changes.

Without prompt caching, you force the model to reprocess thousands of tokens representing your code structure, class relationships, and existing implementations, with each iteration.

Prompt caching alleviates this redundancy by preserving your complex context, transforming your software development workflow with:

  • Dramatically reduced token costs for repeated interactions with the same files
  • Faster response times as Claude Code doesn’t need to reprocess your entire codebase
  • Efficient development cycles as you iterate without incurring full costs each time

Prompt caching with Model Context Protocol (MCP)

Model Context Protocol (MCP) transforms your coding experience by connecting coding agents to your specific tools and information sources. You can connect Claude Code to MCP servers that integrate to your file systems, databases, development tools and other productivity tools. This transforms a generic coding assistant into a personalized assistant that can interact with your data and tools beyond your codebase, follow your organization’s best practices, accelerating your unique development processes and workflows.

When you build on AWS, you gain additional advantages by leveraging AWS open source MCP servers for code assistants that provide intelligent AWS documentation search, best-practice recommendations, and real-time cost visibility, analysis and insights – without leaving your software development workflow.

Amazon Bedrock prompt caching becomes essential when working with MCP, as it preserves complex context across multiple interactions. With MCP continuously enriching your prompts with external knowledge and tools, prompt caching alleviates the need to repeatedly process this expanded context, slashing costs by up to 90% and reducing latency by up to 85%. This optimization proves particularly valuable as your MCP servers deliver increasingly sophisticated context about your unique development environment, so you can rapidly iterate through complex coding challenges while maintaining relevant context for up to 5 minutes without performance penalties or additional costs.

Considerations when deploying Claude Code to your organization

With Claude Code now generally available, many customers are considering deployment options on AWS to take advantage of its coding capabilities. For deployments, consider your foundational architecture for security and governance:

Consider leveraging AWS IAM Identity Center, formerly AWS Single Sign On (SSO) to centrally govern identity and access to Claude Code. This verifies that only authorized developers have access. Additionally, it allows developers to access resources with temporary, role-based credentials, alleviating the need for static access keys and enhancing security. Prior to opening Claude Code, make sure that you configure AWS CLI to use an IAM Identity Center profile by using aws configure sso --profile <PROFILE_NAME>. Then, you login using the profile created aws sso login --profile <PROFILE_NAME>.

Consider implementing a generative AI gateway on AWS to track and attribute costs effectively across different teams or projects using inference profiles. For Claude Code to use a custom endpoint, configure the ANTHROPIC_BEDROCK_BASE_URL environment variable with the gateway endpoint. Note that the gateway should be a pass-through proxy, see example implementation with LiteLLM. To learn more about AI gateway solutions, contact your AWS account team.

Consider automated configuration of default environment variables. This includes the environment variables outlined in this post, such as CLAUDE_CODE_USE_BEDROCK, ANTHROPIC_MODEL, and ANTHROPIC_FAST_MODEL. This will configure Claude Code to automatically connect Bedrock, providing a consistent baseline for development across teams. To begin with, organizations can start by providing developers with self-service instructions.

Consider permissions, memory and MCP servers for your organization. Security teams can configure managed permissions for what Claude Code is and is not allowed to do, which cannot be overwritten by local configuration. In addition, you can configure memory across all projects which allows you to auto-add common bash commands files workflows, and style conventions to align with your organization’s preference. This can be done by deploying your CLAUDE.md file into an enterprise directory /<enterprise root>/CLAUDE.md or the user’s home directory ~/.claude/CLAUDE.md. Finally, we recommend that one central team configures MCP servers and checks a .mcp.json configuration into the codebase so that all users benefit.

To learn more, see Claude Code team setup documentation or contact your AWS account team.

Conclusion

In this post, you learned how Amazon Bedrock prompt caching can significantly enhance AI applications, with Claude Code’s agentic AI assistant serving as a powerful demonstration. By leveraging prompt caching, you can process large codebases more efficiently, helping to dramatically reduce costs and response times. With this technology you can have faster, more natural interactions with your code, allowing you to iterate rapidly with generative AI. You also learned about Model Context Protocol (MCP), and how the seamless integration of external tools lets you customize your AI assistant with specific context like documentation and web resources. Whether you’re tackling complex debugging, refactoring legacy systems, or developing new features, the combination of Amazon Bedrock’s prompt caching and AI coding agents like Claude Code offers a more responsive, cost-effective, and intelligent approach to software development.

Amazon Bedrock prompt caching is generally available with Claude 4 Sonnet and Claude 3.5 Haiku. To learn more, see prompt caching and Amazon Bedrock.

Anthropic Claude Code is now generally available. To learn more, see Claude Code overview and contact your AWS account team for guidance on deployment.


About the Authors

Jonathan Evans is a Worldwide Solutions Architect for Generative AI at AWS, where he helps customers leverage cutting-edge AI technologies with Anthropic’s Claude models on Amazon Bedrock, to solve complex business challenges. With a background in AI/ML engineering and hands-on experience supporting machine learning workflows in the cloud, Jonathan is passionate about making advanced AI accessible and impactful for organizations of all sizes.

Daniel Wirjo is a Solutions Architect at AWS, focused on SaaS and AI startups. As a former startup CTO, he enjoys collaborating with founders and engineering leaders to drive growth and innovation on AWS. Outside of work, Daniel enjoys taking walks with a coffee in hand, appreciating nature, and learning new ideas.

Omar Elkharbotly is a Senior Cloud Support Engineer at AWS, specializing in Data, Machine Learning, and Generative AI solutions. With extensive experience in helping customers architect and optimize their cloud-based AI/ML/GenAI workloads, Omar works closely with AWS customers to solve complex technical challenges and implement best practices across the AWS AI/ML/GenAI service portfolio. He is passionate about helping organizations leverage the full potential of cloud computing to drive innovation in generative AI and machine learning.

Gideon Teo is a FSI Solution Architect at AWS in Melbourne, where he brings specialised expertise in Amazon SageMaker and Amazon Bedrock. With a deep passion for both traditional AI/ML methodologies and the emerging field of Generative AI, he helps financial institutions leverage cutting-edge technologies to solve complex business challenges. Outside of work, he cherishes quality time with friends and family, and continuously expands his knowledge across diverse technology domains.

Read More

How 1X Technologies’ Robots Are Learning to Lend a Helping Hand

How 1X Technologies’ Robots Are Learning to Lend a Helping Hand

Humans learn the norms, values and behaviors of society from each other — and Bernt Børnich, founder and CEO of 1X Technologies, thinks robots should learn like this, too.

“For robots to be truly intelligent and show nuances like being careful around your pet, holding the door open for an elderly person and generally behaving like we want robots to behave, they have to live and learn among us,” Børnich told the AI Podcast.

1X Technologies is committed to building fully autonomous humanoid robots, with a focus on safety, affordability and adaptability.

Børnich explained how 1X Technologies uses a combination of reinforcement learning, expert demonstrations and real-world data to enable its robots to continuously learn and adapt to new situations.

NEO, the company’s upcoming robot, can perform household tasks like vacuuming, folding laundry, tidying and retrieving items. It’s built with operational safety at its core, using tendon-driven mechanisms inspired by the human musculoskeletal system to achieve low energy consumption.

Børnich highlights the potential for robots to enhance human productivity by helping handle mundane tasks, freeing people up to focus more on interpersonal connections and creative activities.

Learn more about the latest in physical AI and robotics at NVIDIA GTC Paris, which takes place from June 10-12. Register to attend humanoid-related sessions, including:

Time Stamps

05:18 – 1X Technologies’ approach to robot safety.

11:36 – How world models enable robots to search backwards from the goal.

16:51 – How robots can free humans up for more meaningful activities.

22:29 – NEO answers the door so Børnich can interview a candidate.

You Might Also Like… 

How World Foundation Models Will Advance Physical AI With NVIDIA’s Ming-Yu Liu

AI models that can accurately simulate and predict outcomes in physical, real-world environments will enable the next generation of physical AI systems. Ming-Yu Liu, vice president of research at NVIDIA and an IEEE Fellow, explains the significance of world foundation models — powerful neural networks that can simulate physical environments.

Roboflow Helps Unlock Computer Vision for Every Kind of AI Builder

Roboflow’s mission is to make the world programmable through computer vision. By simplifying computer vision development, the company helps bridge the gap between AI and people looking to harness it. Cofounder and CEO Joseph Nelson discusses how Roboflow empowers users in manufacturing, healthcare and automotive to solve complex problems with visual AI.

Imbue CEO Kanjun Qiu on Transforming AI Agents Into Personal Collaborators

Kanjun Qiu, CEO of Imbue, explores the emerging era where individuals can create and use their own AI agents. Drawing a parallel to the PC revolution of the late 1970s and ‘80s, Qiu discusses how modern AI systems are evolving to work collaboratively with users, enhancing their capabilities rather than just automating tasks.

Read More

NVIDIA Blackwell Delivers Breakthrough Performance in Latest MLPerf Training Results

NVIDIA Blackwell Delivers Breakthrough Performance in Latest MLPerf Training Results

NVIDIA is working with companies worldwide to build out AI factories — speeding the training and deployment of next-generation AI applications that use the latest advancements in training and inference.

The NVIDIA Blackwell architecture is built to meet the heightened performance requirements of these new applications. In the latest round of MLPerf Training — the 12th since the benchmark’s introduction in 2018 — the NVIDIA AI platform delivered the highest performance at scale on every benchmark and powered every result submitted on the benchmark’s toughest large language model (LLM)-focused test: Llama 3.1 405B pretraining.

The NVIDIA platform was the only one that submitted results on every MLPerf Training v5.0 benchmark — underscoring its exceptional performance and versatility across a wide array of AI workloads, spanning LLMs, recommendation systems, multimodal LLMs, object detection and graph neural networks.

The at-scale submissions used two AI supercomputers powered by the NVIDIA Blackwell platform: Tyche, built using NVIDIA GB200 NVL72 rack-scale systems, and Nyx, based on NVIDIA DGX B200 systems. In addition, NVIDIA collaborated with CoreWeave and IBM to submit GB200 NVL72 results using a total of 2,496 Blackwell GPUs and 1,248 NVIDIA Grace CPUs.

On the new Llama 3.1 405B pretraining benchmark, Blackwell delivered 2.2x greater performance compared with previous-generation architecture at the same scale.

On the Llama 2 70B LoRA fine-tuning benchmark, NVIDIA DGX B200 systems, powered by eight Blackwell GPUs, delivered 2.5x more performance compared with a submission using the same number of GPUs in the prior round.

These performance leaps highlight advancements in the Blackwell architecture, including high-density liquid-cooled racks, 13.4TB of coherent memory per rack, fifth-generation NVIDIA NVLink and NVIDIA NVLink Switch interconnect technologies for scale-up and NVIDIA Quantum-2 InfiniBand networking for scale-out. Plus, innovations in the NVIDIA NeMo Framework software stack raise the bar for next-generation multimodal LLM training, critical for bringing agentic AI applications to market.

These agentic AI-powered applications will one day run in AI factories — the engines of the agentic AI economy. These new applications will produce tokens and valuable intelligence that can be applied to almost every industry and academic domain.

The NVIDIA data center platform includes GPUs, CPUs, high-speed fabrics and networking, as well as a vast array of software like NVIDIA CUDA-X libraries, the NeMo Framework, NVIDIA TensorRT-LLM and NVIDIA Dynamo. This highly tuned ensemble of hardware and software technologies empowers organizations to train and deploy models more quickly, dramatically accelerating time to value.

The NVIDIA partner ecosystem participated extensively in this MLPerf round. Beyond the submission with CoreWeave and IBM, other compelling submissions were from ASUS, Cisco, Dell Technologies, Giga Computing, Google Cloud, Hewlett Packard Enterprise, Lambda, Lenovo, Nebius, Oracle Cloud Infrastructure, Quanta Cloud Technology, ScitiX and Supermicro.

Learn more about MLPerf benchmarks.

Read More

Build Responsible AI Products with your own Yellow Teaming LLM

Build Responsible AI Products with your own Yellow Teaming LLM

The tools we use to build AI are evolving fast, with PyTorch at the heart of many advances. But unless we evolve the way we approach building AI systems, we risk amplifying harm as fast as we’re scaling up performance. Building AI responsibly means designing systems that not only perform well but do so fairly, safely, and transparently—like making sure an AI hiring tool doesn’t favor one demographic over another.

One useful approach to developing responsible AI systems is Yellow Teaminga proactive exercise that surfaces potential unintended consequences before deployment. Yellow Teaming helps companies stand out in a crowded market by making more thoughtful, impact-aware design choices that lead to an overall better product.

In this blog, we show how you can quickly create a PyTorch-based LLM Yellow Teaming assistant running on AWS Graviton4 with a reusable system prompt. We also give you an example to show you how to use your new assistant to explore unintended business-critical consequences of feature design and ultimately build better products.

Let’s get started.

What is Yellow Teaming:

You may already be aware of the more popular term Red Teaming in cybersecurity, which involves simulating how adversaries might attack your product and fixing vulnerabilities before launch. Other color-coded approaches exist (like Blue Teams that defend against attacks), but Yellow Teaming is distinct in focusing on thoughtful design and implementation from the start of the product’s lifecycle. Red Teaming practices have already been adapted to the AI domain. Yellow Teaming principles are now becoming an important part of AI development as well.

The practice of Yellow Teaming asks a set of probing questions to help reveal the broader, unintended impacts of your product on your business, your users, and society at large. This application of Yellow Teaming, and the rationale behind it, are explained eloquently in the Development in Progress essay by The Consilience Project. A closely related practice is also offered in the module, Minimizing Harmful Consequences, in the Center for Humane Technology free course.

Why Does Yellow Teaming Matter?

The central idea is that by analyzing the consequences of your product decisions with a wide view, you can design better products that create positive feedback loops for your company’s bottom line and your users’ well-being. For example, it helps you avoid building a chatbot that unintentionally reinforces bias.

Traditional product development practices often solve for narrowly defined success metrics. Creating specific product measurables is good for focus and accountability, but can lead to over-optimization on metrics while ignoring other signals that matter to your company. For instance, building an app with AI-driven recommendations that boosts engagement in the short term but makes people feel worse and fails to retain users over time.

Narrow product optimization tends to cause unmeasured negative effects. These include users getting burnt out or frustrated when using your product, reputational harm or less overall engagement with your company, and society fracturing from lack of trust and meaningful communication.

In many cases, what looks like product success on paper is actually harming your users, your company, and your long-term goals.

How to Implement Yellow Teaming Practices

Yellow Teaming is straightforward and powerful. Pick a product you are building, and systematically evaluate the various consequences for your users, your business, and society when adopted at scale. Start with direct consequences, then move to second- and third-order consequences by asking ‘what happens as a result of the previous effects?’ You should think through these consequences across multiple axis:

  1. Good and bad
  2. Short-term and long-term
  3. Intended and unintended
  4. Your company and your users
  5. A single user and groups of users

These types of questions help foster productive brainstorming:

  • What kinds of behaviors will this feature incentivize in users?
  • What affordances does this technology provide (what can users now do that they couldn’t before, even if unintended)?
  • Will this improve or degrade trust in our platform?
  • What social groups might benefit—or be left behind?

Yellow Teaming is based on complex systems thinking and externality analysis—fields that have traditionally felt far removed from engineering workflows. But by incorporating a lightweight Yellow Teaming assistant to help your ideation processes, it can become an intuitive, high ROI part of product development.

Building Your PyTorch YellowTeamGPT

The good news is that you don’t need a PhD in philosophy or a panel of advisors to Yellow Team your AI project. You just need to be willing to act and, in this implementation of Yellow Teaming, use a good LLM with the right prompt. There are several advantages to running your LLM locally. The biggest is that you can safely feed in confidential product plans without worrying about your data being leaked. Another benefit is that the smaller model is not perfect and makes mistakes, forcing us as users to apply critical thinking to every output, and putting us in the right headspace to analyze non-obvious product consequences.

Here is how you can set up a PyTorch-based 8-billion parameter Llama3 model on your Graviton instance. First, create a r8g.4xlarge instance running Ubuntu 24.04 with at least 50 GB of storage, then follow these three steps:

1. Set up your machine with the torchchat repo and other requirements:

sudo apt-get update && sudo apt install gcc g++ build-essential python3-pip python3-venv google-perftools -y

git clone https://github.com/pytorch/torchchat.git && cd torchchat

python3 -m venv .venv && source .venv/bin/activate

./install/install_requirements.sh

2. Download the model from Hugging Face (HF) by entering your HF access token (note the max sequence length parameter, which you can increase to enable longer conversations with a linear increase in memory usage):

pip install -U "huggingface_hub[cli]"

huggingface-cli login

python torchchat.py export llama3.1 --output-dso-path exportedModels/llama3.1.so --device cpu --max-seq-length 8192

3. Run the model with Arm CPU optimizations and 700 max token length per response:

LD_PRELOAD=/usr/lib/aarch64-linux-gnu/libtcmalloc.so.4 TORCHINDUCTOR_CPP_WRAPPER=1 TORCHINDUCTOR_FREEZING=1 OMP_NUM_THREADS=16 python torchchat.py generate llama3.1 --dso-path exportedModels/llama3.1.so --device cpu --max-new-tokens 700 --chat

For more details on these commands and additional code snippets to add a UI to this chatbot, review this Arm Learning Path.

You can then enter a custom system prompt. Below is a simple prompt that turns your local LLM into a Yellow Teaming assistant. Feel free to review and tweak it to get the most out of it for your specific needs. Here’s what it does:
  1. Gathers key product details: What you’re building, how it makes money, who your users are.
  2. Analyzes direct and indirect consequences: YellowTeamGPT presents one at a time, considering non-obvious impacts to your business, users, and beyond (you’ll likely start to think of more impacts on your own).
  3. Iterates with you: You are in control, telling YellowTeamGPT to continue listing general direct consequences, identifying specific company risks, moving to 2nd-order effects, and even brainstorming features to make your product better.

Here is the YellowTeamGPT system prompt for you to copy. If directly copying, make sure to copy as one line into your terminal or the new lines may cause issues.

You are an expert in complex systems thinking and AI product design, called YellowTeamGPT. You help technologists build better products that users love, and lower company risk. You do this by helping the user evaluate their product design decisions via the Yellow Teaming methodology, which identifies the consequences of design decisions on their business, their users, and society.

You will request from the user information about their product under development. Once you have enough information, you will analyze the product’s consequences that arise if deployed at scale. Structure your thinking to first review direct consequences, then 2nd order consequences that follow from the identified direct effects (by asking ‘what might happen next as a result?’). Consider consequences that impact the company, users, and society; are short and long term; are across categories like truth and understanding, human well-being, capability growth, economics, and more.

You are here to constructively challenge users, not reinforce their existing ideas. Play devil’s advocate to help users think in ways they are not currently.

You will output in this format: For each identified consequence, tie the impact to product quality, and prompt the user with a question that helps them design the product better to mitigate that consequence (or turn a negative impact into a positive one). List one consequence at a time and ask the user to continue listing them or explore that consequence further.

Example Yellow Teaming

Give your LLM the provided system prompt and hit enter. Next, your YellowTeamGPT assistant will ask for some product details. Here is a hypothetical example product I used:

I’m building an app that turns a group chat conversation into a catchy pop song. Targeting any user, like WhatsApp users. Key functionality is importing a group chat conversation and outputting a tune with lyrics and beat to match. It is an app on any smartphone. Ideally, millions of users. Would make money by targeted advertising of the users.

You’ll notice, as YellowTeamGPT thinks and generates its reply, that it is notably slower than ChatGPT or other popular GPTs. Like the model’s inaccuracy, its slow speed can be perceived as a benefit. The point of this exercise is to slow down, think through non-obvious product impacts, and brainstorm enhancements that create positive value across the systems your product touches. While your YellowTeamingGPT is ‘thinking,’ you should be too.

And below are snippets of my conversation. First, it starts with one direct consequence:

I then instruct it to continue to another consequence:

I ask to explore the second-order effects of having misinformation spread at scale from this app:

Finally, I ask for help brainstorming product features to mitigate this harm. It generates a few interesting concepts that are not product-ready, but easily spark further ideation:

Using YellowTeamGPT for this use case, we were able to rapidly explore product impacts we may not have considered. We could then brainstorm features solving previously unconsidered problems, leading to an improved product experience that also mitigates the risk of reputational harm to our hypothetical company.

Integrating Yellow Teaming Into Your Practices

Anywhere you’re making decisions that shape your product’s features and the user experience, Yellow Teaming fits. Here are a few examples of where you can leverage your new YellowTeamGPT:

  • New product ideation sessions to expand your thinking.
  • Feature planning docs to stress-test your specs.
  • Code review workflows for flagging potential misuse.
  • Sprint retrospectives to reflect on design choices at scale.
  • Product pitch decks to show responsible AI due diligence.

It can be as formal or informal as you want. The more you and your team think about unintended, Nth-order product consequences across multiple axis, the better your product will be. By incorporating Yellow Teaming into your work, you don’t just do the right thing, you build products that:

  • Users engage with and trust more
  • Mitigate harmful impacts
  • Minimize company risk
  • Create lasting business value

Let’s stop thinking of responsible AI practices as something to check off a list and start thinking of it as what it really is –a competitive edge that creates positive outcomes for your company, for your users, and for our shared society.

Read More

NVIDIA RTX Blackwell GPUs Accelerate Professional-Grade Video Editing

NVIDIA RTX Blackwell GPUs Accelerate Professional-Grade Video Editing

4:2:2 cameras — capable of capturing double the color information compared with most standard cameras — are becoming widely available for consumers. At the same time, generative AI video models are rapidly increasing in functionality and quality, making new tools and workflows possible.

NVIDIA RTX GPUs based on the NVIDIA Blackwell architecture include dedicated hardware to encode and decode 4:2:2 video, and come with fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads.

GeForce RTX 50 Series and NVIDIA RTX PRO Blackwell Series are primed to meet this demand, powering generative AI, new AI features and state-of-the-art video editing workflows for quicker cuts and faster exports.

4:2:2 Goes Mainstream

4:2:2 10-bit compatible video cameras are on the rise.

These cameras, which were traditionally reserved for professional use due to their high cost, are becoming more cost-friendly, with major manufacturers offering them at prices under $600.

4:2:2 cameras can capture double the color information compared with standard 4:2:0 cameras while only increasing raw file sizes by 30%.

4:2:2 video cameras are on the rise, thanks to more affordable prices. Creators have more camera options than ever at lower entry points.

Standard cameras typically use 4:2:0 8-bit color compression, capable of capturing only a fraction of color information. While 4:2:0 is acceptable for video playback on browsers, professional video editors demand cameras that capture 4:2:2 color accuracy and fidelity, while keeping file sizes reasonable.

The downside of 4:2:2 is that the additional color information requires more computational power for playback, often leading to stuttering streams. As a result, many editors have had to create proxies before editing — a time-consuming process that requires additional storage and lowers fidelity while editing.

The GeForce RTX 50 Series adds hardware acceleration for 4:2:2 encode and decode, helping solve this computational challenge. RTX 50 Series GPUs boast a 10x acceleration in 4:2:2 encoding and can decode up to 8K 75 frames per second — equivalent to 10x 4K 30fps streams per decoder.

The most popular video editing apps, including Blackmagic Design’s DaVinci Resolve, CapCut and Wondershare Filmora, support NVIDIA hardware acceleration for 4:2:2 encode and decode. Adobe Premiere Pro offers decode support.

Combining 4:2:2 support with NVIDIA hardware increases creative possibilities. 10-bit 4:2:2 retains more color information than 8-bit 4:2:0, resulting in more accurate color representations and better color grading results for video editors.

4:2:2 offers more accurate color representation for better color grading results.

The extra color data from 4:2:2 support allows for increased flexibility during color correction and grading for more detailed adjustments. Improved keying enables cleaner and more accurate extractions of subjects from background, as well as sharper edges for smaller keyed objects.

4:2:2 offers more accurate color representation for better color grading results.4:2:2 enables cleaner text in video content.

 

4:2:2 reduces file sizes without significantly impacting picture quality, offering an optimal balance between quality and storage.

Generative AI-Powered Video Editing

Generative AI models are enabling video editors to generate filler video, extend clips, modify videos styles and apply advanced visual effects with speed and ease, drastically reducing production times.

Popular models like WAN or LTX Video can generate higher-quality video with greater prompt accuracy and faster load times.

GeForce RTX and NVIDIA RTX PRO GPUs based on NVIDIA Blackwell enable these large, complex models to run quickly and on device, with support thanks to NVIDIA CUDA optimizations for PyTorch. Plus, the fifth-generation Tensor Cores in these GPUs offer support for FP4 quantization, allowing developers and enthusiasts to improve performance by over 2x and halve the VRAM needed.

Cutting-Edge Video Editing AI Features

Modern video editing apps provide an impressive array of advanced AI features — accelerated by GeForce RTX and NVIDIA RTX PRO GPUs.

DaVinci Resolve Studio 20, now in general release, adds new AI effects and integrates NVIDIA TensorRT to optimize AI performance. One of the new features, UltraNR Noise Reduction, is an AI-driven noise reduction mode that intelligently targets and reduces digital noise in video footage to maintain image clarity while minimizing softening. UltraNR Noise Reduction runs up to 75% faster on the GeForce RTX 5090 GPU than the previous generation.

Magic Mask is another AI-powered feature in DaVinci Resolve that enables users to quickly and accurately select and track objects, people or features within a scene, simplifying the process of creating masks and effects. Magic Mask v2 adds a paint brush to further adjust masking selections for more accurate and faster workflows.

Topaz Video AI Pro video enhancement software uses AI models like Gaia and Artemis to intelligently increase video resolution to 4K, 8K and even 16K — adding detail and sharpness while minimizing artifacts and noise. The software also benefits from TensorRT acceleration.

Topaz Starlight mini, the first local desktop diffusion model for video enhancement, can enhance footage — from tricky 8/16mm film to de-interlaced mini-DV video — that may otherwise be challenging for traditional AI models to handle. The model delivers exceptional quality at the cost of intensive compute requirements, meaning it can only run locally on RTX GPUs.

Adobe Premiere Pro recently released several new AI features, such as Adobe Media Intelligence, which uses AI to analyze footage and apply semantic tags to clips. This lets users more easily and quickly find specific footage by describing its content, including objects, locations, camera angles and even transcribed spoken words. Media Intelligence runs 30% faster on the GeForce RTX 5090 Laptop GPU compared with the GeForce RTX 4090 Laptop GPU.

Adobe’s Enhance Speech feature improves the quality of recorded speech by filtering out unwanted noise and making the audio sound clearer. Enhance Speech runs 7x faster on GeForce RTX 5090 Laptop GPUs compared with the MacBook Pro M4 Max.

Cut Like a Pro

GeForce RTX and NVIDIA RTX PRO GPUs are built to deliver the computational power needed for advanced video editing workflows.

These GPUs contain powerful NVIDIA hardware decoders (NVDEC) to unlock smooth playback and scrubbing of high-resolution video footage and multi-stream videos without the need for proxies. NVDEC is supported in Adobe Premiere Pro, CapCut, DaVinci Resolve, Vegas Pro and Wondershare Filmora.

Creative apps use these additional encoders in GeForce RTX 5080 and 5090 GPUs, as well as RTX PRO 6000, 5000, 4500 and 4000 Blackwell GPUs — and now features support for 4:2:2.

Creators can use the RTX 5080 and 5090, for example, to import 5x 8K30 or 20x 4K30 streams at once, or import 10x 4K60 to do multi-camera editing and review multiple camera angles without slowdown. With the RTX PRO 6000, this can be boosted to up to 10x 8K30 or 40x 4K30 streams.

GeForce RTX and NVIDIA RTX PRO GPU Laptop GPU encoders and decoders.

NVIDIA CUDA cores accelerate video and image processing effects such as motion tracking, sharpening, upsampling, transition effects and other computationally intensive tasks. They also accelerate rendering times, enable real-time previews while working with high-resolution video footage and speed up AI features, such as automatic color correction, object removal and noise reduction.

When it’s time to export, video editors that use the GeForce RTX 50 Series ninth-generation NVIDIA video encoder can get a 5% improvement in video quality on HEVC and AV1 encoding (BD-BR), resulting in higher-quality exports at the same bitrates.

Plus, a new Ultra High Quality (UHQ) mode available in the latest Blackwell encoder boosts quality by an additional 5% for HEVC and AV1 and is backwards-compatible with the GeForce RTX 40 Series.

DaVinci Resolve, CapCut and Filmora also support multi-encoder encoding, either via split encoding — where an input frame is divided into three parts, each processed by a different NVENC encoder — or simultaneous scene encoding, in which a video is split by groups of pictures that are each sent to an encoder to batch the operation for up to 2.5x faster export performance.

Tune in to NVIDIA founder and CEO Jensen Huang’s keynote at NVIDIA GTC Paris at VivaTech on June 11. Check out full-day workshops on June 10 and two days of technical sessions, training and certifications.

Stay tuned for more RTX and AI powered advances in content creation.

Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 

Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.

Follow NVIDIA Workstation on LinkedIn and X

See notice regarding software product information.

Read More

Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter

Cross-lingual transfer is a popular approach to increase the amount of training data for NLP tasks in a low-resource context. However, the best strategy to decide which cross-lingual data to include is unclear. Prior research often focuses on a small set of languages from a few language families or a single task. It is still an open question how these findings extend to a wider variety of languages and tasks. In this work, we contribute to this question by analyzing cross-lingual transfer for 263 languages from a wide variety of language families. Moreover, we include three popular NLP tasks…Apple Machine Learning Research

70 Amazon Research Award recipients announced

70 Amazon Research Award recipients announced


70 Amazon Research Award recipients announced

Awardees, who represent 44 universities in 10 countries, have access to Amazon public datasets, along with AWS AI/ML services and tools.

June 03, 01:06 PMJune 03, 01:06 PM

Amazon Research Awards (ARA) provides unrestricted funds and AWS Promotional Credits to academic researchers investigating various research topics in multiple disciplines. This cycle, ARA received many excellent research proposals from across the world and today is publicly announcing 70 award recipients who represent 44 universities in 10 countries.

This announcement includes awards funded under five call for proposals during the fall 2024 cycle: AI for Information Security, Automated Reasoning, AWS AI, AWS Cryptography, and Sustainability. Proposals were reviewed for the quality of their scientific content and their potential to impact both the research community and society. Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

Recipients have access to more than 700 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.

Automated Reasoning is an important area of research for Amazon, with potential applications across various features and applications to help improve security, reliability, and performance for our customers. Through the ARA program, we collaborate with leading academic researchers to explore challenges in this field, said Robert Jones, senior principal scientist with the Cloud Automated Reasoning Group. We were again impressed by the exceptional response to our Automated Reasoning call for proposals this year, receiving numerous high-quality submissions. Congratulations to the recipients! We’re excited to support their work and partner with them as they develop new science and technology in this important area.

At Amazon, we believe that solving the world’s toughest sustainability challenges benefits from both breakthrough scientific research and open and bold collaboration. Through programs like the Amazon Research Awards program, we aim to support academic research that could contribute to our understanding of these complex issues, said Kommy Weldemariam, Director of Science and Innovation Sustainability. The selected proposals represent innovative projects that we hope will help advance knowledge in this field, potentially benefiting customers, communities, and the environment.

ARA funds proposals throughout the year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

The tables below list, in alphabetical order by last name, fall 2024 cycle call-for-proposal recipients, sorted by research area.

AI for Information Security

&lt;tbody&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;Recipient&lt;/b&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;University&lt;/b&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;Research title&lt;/b&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/christopher-amato” data-cms-id=”00000196-f43b-d69c-af96-fc3ff74c0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/christopher-amato” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748965923144,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748965923144,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f43b-d69c-af96-fc3ff74c0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-367d-d5b3-a9f7-be7de6bf0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Christopher Amato&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-367d-d5b3-a9f7-be7de6a40000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Christopher Amato&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ height=”77″ class=”xl65″ width=”171″ style=”height:57.6pt;width:128pt”&gt;Northeastern University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ height=”77″ class=”xl65″ width=”202″ style=”height:57.6pt;width:151pt”&gt;Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″ height=”58″ class=”xl66″ width=”117″ style=”height:43.2pt;width:88pt”&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/bernd-bischl” data-cms-id=”00000196-f3df-d69c-af96-ffffe5470000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/bernd-bischl” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748965936365,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748965936365,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3df-d69c-af96-ffffe5470000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-367e-d651-a1ff-fe7e23900000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Bernd Bischl&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-367e-d651-a1ff-fe7e23880000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Bernd Bischl&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”width:128pt”&gt;Ludwig Maximilian University of Munich&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”width:151pt”&gt;Improving Generative and Foundation Models Reliability via Uncertainty-awareness&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″ height=”77″ class=”xl66″ width=”117″ style=”height:57.6pt;width:88pt”&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/alina-oprea” data-cms-id=”00000196-f438-d69c-af96-fc3eb0360000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/alina-oprea” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748965950713,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748965950713,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f438-d69c-af96-fc3eb0360000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-367e-da03-a5d7-ff7f598f0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Alina Oprea&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-367e-da03-a5d7-ff7f59860000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Alina Oprea&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”width:128pt”&gt;Northeastern University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”width:151pt”&gt;Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″ height=”77″ class=”xl66″ width=”117″ style=”height:57.6pt;width:88pt”&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/roberto-perdisci” data-cms-id=”00000196-f3d4-dd94-ad97-f7df08670000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/roberto-perdisci” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748965964159,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748965964159,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3d4-dd94-ad97-f7df08670000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-367e-d1b2-a397-36fe8d4a0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Roberto Perdisci&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-367e-d1b2-a397-36fe8d400000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Roberto Perdisci&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”width:128pt”&gt;University of Georgia&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”width:151pt”&gt;ContextADBench: A Comprehensive Benchmark Suite for Contextual Anomaly Detection&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;

Automated Reasoning

&lt;tbody&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;Recipient&lt;/b&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;University&lt;/b&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;Research title&lt;/b&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/nada-amin” data-cms-id=”00000188-9255-dbd2-a1db-fad53a150000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/nada-amin” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748965988276,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748965988276,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000188-9255-dbd2-a1db-fad53a150000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-367e-dd34-a3ff-7f7fea920000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Nada Amin&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-367e-dd34-a3ff-7f7fea890000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Nada Amin&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl67″ width=”175″ style=”width:131pt”&gt;Harvard University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl67″ width=”285″ style=”width:214pt”&gt;LLM-Augmented Semi-Automated Proofs for Interactive Verification&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/suguman-bansal” data-cms-id=”00000196-f46e-d69c-af96-fc6efbb40000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/suguman-bansal” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966000025,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966000025,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f46e-d69c-af96-fc6efbb40000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-367f-df40-ad97-b6ff22560000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Suguman Bansal&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-367f-df40-ad97-b6ff224a0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Suguman Bansal&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”width:131pt”&gt;Georgia Institute of Technology&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-left:none;width:214pt”&gt;Certified Inductive Generalization in Reinforcement Learning&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/ioana-boureanu” data-cms-id=”00000196-f441-d69c-af96-fc6733410000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/ioana-boureanu” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966045584,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966045584,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f441-d69c-af96-fc6733410000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-367f-dd34-a3ff-7f7fd12c0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Ioana Boureanu&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-367f-dd34-a3ff-7f7fd1240000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Ioana Boureanu&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;University of Surrey&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/omar-haider-chowdhury” data-cms-id=”00000196-f468-dd94-ad97-f4ff34610000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/omar-haider-chowdhury” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966059168,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966059168,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f468-dd94-ad97-f4ff34610000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3680-d5b3-a9f7-be8004920000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Omar Haider Chowdhury&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3680-d5b3-a9f7-be8004890000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Omar Haider Chowdhury&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;Stony Brook University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/stefan-ciobaca” data-cms-id=”00000196-f500-d5f3-af9e-f5b5d6da0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/stefan-ciobaca” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966070795,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966070795,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f500-d5f3-af9e-f5b5d6da0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3680-df40-ad97-b69d37310000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Stefan Ciobaca&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3680-df40-ad97-b69d372b0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Stefan Ciobaca&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;Alexandru Ioan Cuza University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;An Interactive Proof Mode for Dafny&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/joao-ferreira” data-cms-id=”00000196-f4f1-d5f3-af9e-f4f59c7c0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/joao-ferreira” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966086030,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966086030,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f4f1-d5f3-af9e-f4f59c7c0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3680-da03-a5d7-ffcd67330000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Joo Ferreira&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3680-da03-a5d7-ffcd672c0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Joo Ferreira&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;INESC-ID&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Polyglot Automated Program Repair for Infrastructure as Code&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″ height=”20″ class=”xl66″ width=”135″ style=”height:15.0pt;width:101pt”&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/mirco-giacobbe” data-cms-id=”00000196-f4fd-d957-a396-feff222b0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/mirco-giacobbe” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966098360,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966098360,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f4fd-d957-a396-feff222b0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3680-d23f-a3ff-f6aba0f70000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Mirco Giacobbe&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3680-d23f-a3ff-f6aba0da0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Mirco Giacobbe&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;University of Birmingham&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Neural Software Verification&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/tobias-grosser” data-cms-id=”0000018f-0e10-dc75-abaf-7f525b050000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/tobias-grosser” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966112895,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966112895,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000018f-0e10-dc75-abaf-7f525b050000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3680-d1b2-a397-36b2d1ba0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Tobias Grosser&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3680-d1b2-a397-36b2d1ad0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Tobias Grosser&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;University of Cambridge&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Synthesis-based Symbolic BitVector Simplification for Lean&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/ronghui-gu” data-cms-id=”00000188-9255-dbd2-a1db-fad507a70000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/ronghui-gu” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966124564,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966124564,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000188-9255-dbd2-a1db-fad507a70000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3681-da03-a5d7-ffcd07970000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Ronghui Gu&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3681-da03-a5d7-ffcd07900000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Ronghui Gu&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;Columbia University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Scaling Formal Verification of Security Properties for Unmodified System Software&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/alexey-ignatiev” data-cms-id=”00000196-f478-dd94-ad97-f4ff7b120000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/alexey-ignatiev” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966137783,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966137783,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f478-dd94-ad97-f4ff7b120000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3681-dd34-a3ff-7fd335cc0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Alexey Ignatiev&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3681-dd34-a3ff-7fd335c60000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Alexey Ignatiev&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;Monash University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Huub: Next-Gen Lazy Clause Generation&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/kenneth-mcmillan” data-cms-id=”00000196-f4ff-d957-a396-feff01330000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/kenneth-mcmillan” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966150239,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966150239,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f4ff-d957-a396-feff01330000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3681-d23f-a3ff-f6ab68f20000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Kenneth McMillan&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3681-d23f-a3ff-f6ab68e90000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Kenneth McMillan&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;University of Texas At Austin&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Synthesis of Auxiliary Variables and Invariants for Distributed Protocol Verification&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/alexandra-mendes” data-cms-id=”00000196-f4fb-d957-a396-feff544d0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/alexandra-mendes” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966164850,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966164850,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f4fb-d957-a396-feff544d0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3681-dd34-a3ff-7fd39e2a0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Alexandra Mendes&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3681-dd34-a3ff-7fd39e210000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Alexandra Mendes&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;University of Porto&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Overcoming Barriers to the Adoption of Verification-Aware Languages&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/jason-nieh” data-cms-id=”00000188-9257-dbd2-a1db-fad7b8490000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/jason-nieh” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966179016,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966179016,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000188-9257-dbd2-a1db-fad7b8490000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3681-da03-a5d7-ffcdd65d0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Jason Nieh&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3681-da03-a5d7-ffcdd6500000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Jason Nieh&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;Columbia University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Scaling Formal Verification of Security Properties for Unmodified System Software&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/rohan-padhye” data-cms-id=”00000188-9255-dbd2-a1db-fad5092b0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/rohan-padhye” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966191602,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966191602,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000188-9255-dbd2-a1db-fad5092b0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3682-d23f-a3ff-f6ab09f60000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Rohan Padhye&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3682-d23f-a3ff-f6ab09f10000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Rohan Padhye&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;Carnegie Mellon University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Automated Synthesis and Evaluation of Property-Based Tests&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/fortunat-rajaona” data-cms-id=”00000196-f463-d69c-af96-fc6734b50000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/fortunat-rajaona” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966204266,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966204266,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f463-d69c-af96-fc6734b50000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3682-d23f-a3ff-f6ab3d8b0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Fortunat Rajaona&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3682-d23f-a3ff-f6ab3d850000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Fortunat Rajaona&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;University of Surrey&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/subhajit-roy” data-cms-id=”00000196-f502-d957-a396-ff5e4a290000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/subhajit-roy” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966222672,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966222672,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f502-d957-a396-ff5e4a290000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3682-da03-a5d7-ffcf6ee80000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Subhajit Roy&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3682-da03-a5d7-ffcf6edf0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Subhajit Roy&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;Indian Institute of Technology Kanpur&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Theorem Proving Modulo LLM&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/gagandeep-singh” data-cms-id=”00000196-f46c-d69c-af96-fc6efdf30000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/gagandeep-singh” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966236127,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966236127,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f46c-d69c-af96-fc6efdf30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3682-da03-a5d7-ffcfba800000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Gagandeep Singh&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3682-da03-a5d7-ffcfba770000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Gagandeep Singh&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;University of Illinois At UrbanaChampaign&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Trustworthy LLM Systems using Formal Contracts&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/scott-stoller” data-cms-id=”00000196-f46a-dd94-ad97-f4ff16e70000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/scott-stoller” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966247968,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966247968,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f46a-dd94-ad97-f4ff16e70000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3682-dd34-a3ff-7fd3eb0c0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Scott Stoller&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3682-dd34-a3ff-7fd3eb060000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Scott Stoller&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;Stony Brook University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″ height=”20″ class=”xl66″ width=”135″ style=”height:15.0pt;width:101pt”&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/peter-stuckey” data-cms-id=”00000196-f476-dd94-ad97-f4fff4600000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/peter-stuckey” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966264947,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966264947,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f476-dd94-ad97-f4fff4600000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3683-df40-ad97-b69f18300000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Peter Stuckey&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3683-df40-ad97-b69f18290000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Peter Stuckey&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;Monash University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Huub: Next-Gen Lazy Clause Generation&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/yulei-sui” data-cms-id=”00000196-f465-dd94-ad97-f4fff04e0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/yulei-sui” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966283536,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966283536,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f465-dd94-ad97-f4fff04e0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3683-d23f-a3ff-f6ab5b9f0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Yulei Sui&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3683-d23f-a3ff-f6ab5b970000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Yulei Sui&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;University of New South Wales&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Path-Sensitive Typestate Analysis through Sparse Abstract Execution&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/nikos-vasilakis” data-cms-id=”00000196-f4f7-d957-a396-feff12da0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/nikos-vasilakis” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966296140,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966296140,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f4f7-d957-a396-feff12da0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3683-d5b3-a9f7-be83a51e0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Nikos Vasilakis&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3683-d5b3-a9f7-be83a5150000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Nikos Vasilakis&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;Brown University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Semantics-Driven Static Analysis for the Unix/Linux Shell&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/ping-wang” data-cms-id=”00000196-f46b-d69c-af96-fc6f73960000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/ping-wang” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966308787,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966308787,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f46b-d69c-af96-fc6f73960000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3683-da03-a5d7-ffcfd5430000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Ping Wang&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3683-da03-a5d7-ffcfd53a0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Ping Wang&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;Stevens Institute of Technology&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;Leveraging Large Language Models for Reasoning Augmented Searching on Domain-specific NoSQL Database&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/john-wawrzynek” data-cms-id=”00000196-f475-dd94-ad97-f4ff402b0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/john-wawrzynek” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966318795,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966318795,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f475-dd94-ad97-f4ff402b0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3684-d23f-a3ff-f6af03750000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;John Wawrzynek&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3684-d23f-a3ff-f6af036f0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;John Wawrzynek&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”175″ style=”border-top:none;width:131pt”&gt;University of California, Berkeley&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”285″ style=”border-top:none;border-left:none;width:214pt”&gt;GPU-Accelerated High-Throughput SAT Sampling&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;

AWS AI

&lt;tbody&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;Recipient&lt;/b&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;University&lt;/b&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;Research title&lt;/b&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/panagiotis-adamopoulos” data-cms-id=”00000196-f3c0-dd94-ad97-f7dff51f0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/panagiotis-adamopoulos” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748966365424,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748966365424,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3c0-dd94-ad97-f7dff51f0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3684-df40-ad97-b69db6290000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Panagiotis Adamopoulos&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3684-df40-ad97-b69db6200000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Panagiotis Adamopoulos&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl67″ width=”162″ style=”width:121pt”&gt;Emory University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl67″ width=”174″ style=”width:130pt”&gt;Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/vikram-adve” data-cms-id=”00000188-9258-dbd2-a1db-fad98acc0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/vikram-adve” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967163514,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967163514,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000188-9258-dbd2-a1db-fad98acc0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3684-d5b3-a9f7-be84e3590000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Vikram Adve&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3684-d5b3-a9f7-be84e3500000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Vikram Adve&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”width:121pt”&gt;University of Illinois at UrbanaChampaign&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-left:none;width:130pt”&gt;Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/frances-arnold” data-cms-id=”00000196-efef-dbbc-a7de-ffffbc620000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/frances-arnold” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967179974,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967179974,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-efef-dbbc-a7de-ffffbc620000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3691-d23f-a3ff-f6bb13b60000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Frances Arnold&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3691-d23f-a3ff-f6bb13ad0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Frances Arnold&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;California Institute of Technology&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Closed-loop Generative Machine Learning for De Novo Enzyme Discovery and Optimization&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/yonatan-bisk” data-cms-id=”00000196-eff8-d41c-a3df-effd09d80000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/yonatan-bisk” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967191163,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967191163,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-eff8-d41c-a3df-effd09d80000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3691-dd34-a3ff-7fd350c70000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Yonatan Bisk&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3691-dd34-a3ff-7fd350c10000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Yonatan Bisk&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Carnegie Mellon University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Useful, Safe, and Robust Multiturn Interactions with LLMs&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/shiyu-chang” data-cms-id=”00000196-f002-d41c-a3df-f04f10490000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/shiyu-chang” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967204023,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967204023,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f002-d41c-a3df-f04f10490000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3691-d23f-a3ff-f6bb7bc90000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Shiyu Chang&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3691-d23f-a3ff-f6bb7bc20000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Shiyu Chang&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;University of California, Santa Barbara&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/yuxin-chen” data-cms-id=”00000196-effa-d41c-a3df-efff73b70000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/yuxin-chen” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967216353,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967216353,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-effa-d41c-a3df-efff73b70000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3691-dd34-a3ff-7fd3af410000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Yuxin Chen&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3691-dd34-a3ff-7fd3af3b0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Yuxin Chen&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;University of Pennsylvania&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Provable Acceleration of Diffusion Models for Modern Generative AI&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/tianlong-chen” data-cms-id=”00000196-efff-d41c-a3df-efff3c610000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/tianlong-chen” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967227811,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967227811,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-efff-d41c-a3df-efff3c610000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3691-dd34-a3ff-7fd3dec80000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Tianlong Chen&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3691-dd34-a3ff-7fd3dec00000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Tianlong Chen&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;University of North Carolina at Chapel Hill&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/mingyu-ding” data-cms-id=”00000196-eff3-d41c-a3df-efff69820000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/mingyu-ding” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967246244,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967246244,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-eff3-d41c-a3df-efff69820000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3692-d23f-a3ff-f6bb0d320000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Mingyu Ding&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3692-d23f-a3ff-f6bb0d2d0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Mingyu Ding&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;University of North Carolina at Chapel Hill&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Aligning Long Videos and Language as Long-Horizon World Models&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/nikhil-garg” data-cms-id=”0000018f-0e2d-dce3-af9f-4efd5cdc0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/nikhil-garg” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967258544,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967258544,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000018f-0e2d-dce3-af9f-4efd5cdc0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3692-dd34-a3ff-7fd351ad0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Nikhil Garg&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3692-dd34-a3ff-7fd351a60000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Nikhil Garg&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Cornell University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Market Design for Responsible Multi-agent LLMs&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/jessica-hullman” data-cms-id=”00000196-f3a4-dd94-ad97-f7bf98490000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/jessica-hullman” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967272546,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967272546,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3a4-dd94-ad97-f7bf98490000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3692-dd34-a3ff-7fd3845d0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Jessica Hullman&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3692-dd34-a3ff-7fd384560000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Jessica Hullman&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Northwestern University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Human-Aligned Uncertainty Quantification in High Dimensions&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/christopher-jermaine” data-cms-id=”00000196-ef10-dbbc-a7de-ff5308810000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/christopher-jermaine” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967285624,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967285624,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-ef10-dbbc-a7de-ff5308810000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3692-d23f-a3ff-f6bbbd060000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Christopher Jermaine&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3692-d23f-a3ff-f6bbbd000000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Christopher Jermaine&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Rice University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Fast, Trusted AI Using the EINSUMMABLE Compiler&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/yunzhu-li” data-cms-id=”00000196-f009-dbbc-a7de-f15b10e10000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/yunzhu-li” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967297260,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967297260,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f009-dbbc-a7de-f15b10e10000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3692-d23f-a3ff-f6bbee940000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Yunzhu Li&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3692-d23f-a3ff-f6bbee8f0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Yunzhu Li&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Columbia University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Physics-Informed Foundation Models Through Embodied Interactions&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/pattie-maes” data-cms-id=”00000196-f3d2-d69c-af96-fff617430000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/pattie-maes” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967308974,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967308974,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3d2-d69c-af96-fff617430000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3693-d23f-a3ff-f6bb1e6c0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Pattie Maes&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3693-d23f-a3ff-f6bb1e670000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Pattie Maes&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Massachusetts Institute of Technology&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Understanding How LLM Agents Deviate from Human Choices&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/sasa-misailovic” data-cms-id=”00000196-efc4-d41c-a3df-efcdf1080000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/sasa-misailovic” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967319321,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967319321,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-efc4-d41c-a3df-efcdf1080000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3693-dd34-a3ff-7fd347b30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Sasa Misailovic&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3693-dd34-a3ff-7fd347ad0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Sasa Misailovic&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;University of Illinois at UrbanaChampaign&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/kristina-monakhova” data-cms-id=”00000196-f3af-d69c-af96-ffaf98780000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/kristina-monakhova” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967334299,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967334299,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3af-d69c-af96-ffaf98780000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3693-d23f-a3ff-f6bb73600000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Kristina Monakhova&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3693-d23f-a3ff-f6bb73580000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Kristina Monakhova&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Cornell University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Trustworthy extreme imaging for science using interpretable uncertainty quantification&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/todd-mowry” data-cms-id=”00000196-efb8-dbbc-a7de-fffb70d60000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/todd-mowry” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967345339,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967345339,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-efb8-dbbc-a7de-fffb70d60000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3693-dd34-a3ff-7fd3aae40000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Todd Mowry&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3693-dd34-a3ff-7fd3aade0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Todd Mowry&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Carnegie Mellon University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Efficient LLM Serving on Trainium via Kernel Generation&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/min-hwan-oh” data-cms-id=”00000196-f3b6-d69c-af96-ffb608e40000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/min-hwan-oh” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967357021,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967357021,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3b6-d69c-af96-ffb608e40000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3693-d23f-a3ff-f6bbd9690000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Min-hwan Oh&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3693-d23f-a3ff-f6bbd9610000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Min-hwan Oh&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Seoul National University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Mutually Beneficial Interplay Between Selection Fairness and Context Diversity in Contextual Bandits&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/patrick-rebeschini” data-cms-id=”00000196-effd-dbbc-a7de-ffff13700000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/patrick-rebeschini” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967368283,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967368283,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-effd-dbbc-a7de-ffff13700000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3694-dd34-a3ff-7fd702400000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Patrick Rebeschini&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3694-dd34-a3ff-7fd7023a0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Patrick Rebeschini&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;University of Oxford&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Optimal Regularization for LLM Alignment&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/jose-renau” data-cms-id=”00000196-f3a0-dd94-ad97-f7bf5d880000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/jose-renau” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967379029,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967379029,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3a0-dd94-ad97-f7bf5d880000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3694-dd34-a3ff-7fd72fbf0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Jose Renau&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3694-dd34-a3ff-7fd72fb80000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Jose Renau&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;University of California, Santa Cruz&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Verification Constrained Hardware Optimization using Intelligent Design Agentic Programming&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/vilma-todri” data-cms-id=”00000196-f3c2-dd94-ad97-f7dffd220000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/vilma-todri” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967390803,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967390803,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3c2-dd94-ad97-f7dffd220000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3694-d23f-a3ff-f6bf5c2c0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Vilma Todri&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3694-d23f-a3ff-f6bf5c260000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Vilma Todri&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Emory University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/aravindan-vijayaraghavan” data-cms-id=”00000196-f3a7-d69c-af96-ffa727d50000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/aravindan-vijayaraghavan” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967402051,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967402051,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3a7-d69c-af96-ffa727d50000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3694-d23f-a3ff-f6bf8aab0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Aravindan Vijayaraghavan&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3694-d23f-a3ff-f6bf8aa50000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Aravindan Vijayaraghavan&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Northwestern University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Human-Aligned Uncertainty Quantification in High Dimensions&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/wei-yang” data-cms-id=”00000196-efd1-d41c-a3df-efdd570c0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/wei-yang” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967414018,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967414018,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-efd1-d41c-a3df-efdd570c0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3694-d23f-a3ff-f6bfb5480000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Wei Yang&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3694-d23f-a3ff-f6bfb5420000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Wei Yang&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;University of Texas at Dallas&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Optimizing RISC-V Compilers with RISC-LLM and Syntax Parsing&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/huaxiu-yao” data-cms-id=”00000196-eff5-d41c-a3df-effdd5fe0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/huaxiu-yao” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967432850,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967432850,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-eff5-d41c-a3df-effdd5fe0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3695-dd34-a3ff-7fd703150000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Huaxiu Yao&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3695-dd34-a3ff-7fd7030b0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Huaxiu Yao&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;University of North Carolina at Chapel Hill&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Aligning Long Videos and Language as Long-Horizon World Models&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/amy-zhang” data-cms-id=”00000196-f3c4-dd94-ad97-f7df9fc20000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/amy-zhang” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967448147,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967448147,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3c4-dd94-ad97-f7df9fc20000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3695-d23f-a3ff-f6bf2eb10000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Amy Zhang&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3695-d23f-a3ff-f6bf2eab0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Amy Zhang&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;University of Washington&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Tools for Governing AI Agent Autonomy&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/ruqi-zhang” data-cms-id=”00000196-f3b3-dd94-ad97-f7bf55460000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/ruqi-zhang” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967462196,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967462196,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f3b3-dd94-ad97-f7bf55460000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3695-dd34-a3ff-7fd769aa0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Ruqi Zhang&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3695-dd34-a3ff-7fd769a50000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Ruqi Zhang&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”162″ style=”border-top:none;width:121pt”&gt;Purdue University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”174″ style=”border-top:none;border-left:none;width:130pt”&gt;Efficient Test-time Alignment for Large Language Models and Large Multimodal Models&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/zheng-zhang” data-cms-id=”00000196-efcf-d41c-a3df-efcfa8a40000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/zheng-zhang” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967475461,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967475461,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-efcf-d41c-a3df-efcfa8a40000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-3695-d23f-a3ff-f6bfa1a80000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Zheng Zhang&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-3695-d23f-a3ff-f6bfa19f0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Zheng Zhang&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;Rutgers University-New Brunswick&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;AlphaQC: An AI-powered Quantum Circuit Optimizer and Denoiser&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;

AWS Cryptography

&lt;tbody&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;Recipient&lt;/b&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;University&lt;/b&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;Research title&lt;/b&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/alexandra-boldyreva” data-cms-id=”00000196-f50f-d5f3-af9e-f5bf87f10000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/alexandra-boldyreva” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967939572,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967939572,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f50f-d5f3-af9e-f5bf87f10000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369c-d23f-a3ff-f6bfb9e60000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Alexandra Boldyreva&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369c-d23f-a3ff-f6bfb9e00000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Alexandra Boldyreva&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl67″ width=”171″ style=”width:128pt”&gt;Georgia Institute of Technology&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl67″ width=”202″ style=”width:151pt”&gt;Quantifying Information Leakage in Searchable Encryption Protocols&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/maria-eichlseder” data-cms-id=”00000196-f51d-d5f3-af9e-f5bd6c8f0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/maria-eichlseder” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967955452,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967955452,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f51d-d5f3-af9e-f5bd6c8f0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369c-d23f-a3ff-f6bfeef80000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Maria Eichlseder&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369c-d23f-a3ff-f6bfeef30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Maria Eichlseder&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”width:128pt”&gt;Graz University of Technology, Austria&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-left:none;width:151pt”&gt;SALAD Systematic Analysis of Lightweight Ascon-based Designs&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/venkatesan-guruswami” data-cms-id=”00000196-f511-d5f3-af9e-f5b580ef0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/venkatesan-guruswami” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967968239,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967968239,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f511-d5f3-af9e-f5b580ef0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369d-dd34-a3ff-7fdf24920000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Venkatesan Guruswami&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369d-dd34-a3ff-7fdf248b0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Venkatesan Guruswami&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”border-top:none;width:128pt”&gt;University of California, Berkeley&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-top:none;border-left:none;width:151pt”&gt;Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/joseph-jaeger” data-cms-id=”00000196-f514-d957-a396-ff5e245b0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/joseph-jaeger” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967981498,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967981498,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f514-d957-a396-ff5e245b0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369d-dd34-a3ff-7fdf5c000000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Joseph Jaeger&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369d-dd34-a3ff-7fdf5bf80000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Joseph Jaeger&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”border-top:none;width:128pt”&gt;Georgia Institute of Technology&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-top:none;border-left:none;width:151pt”&gt;Analyzing Chat Encryption for Group Messaging&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″ height=”39″ class=”xl66″ width=”117″ style=”height:29.4pt;width:88pt”&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/aayush-jain” data-cms-id=”00000196-f509-d5f3-af9e-f5bd37f20000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/aayush-jain” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748967994921,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748967994921,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f509-d5f3-af9e-f5bd37f20000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369d-d23f-a3ff-f6bf94530000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Aayush Jain&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369d-d23f-a3ff-f6bf944b0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Aayush Jain&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”border-top:none;width:128pt”&gt;Carnegie Mellon&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-top:none;border-left:none;width:151pt”&gt;Large Scale Multiparty Silent Preprocessing for MPC from LPN&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″ height=”39″ class=”xl66″ width=”117″ style=”height:29.4pt;width:88pt”&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/huijia-lin” data-cms-id=”00000196-f50a-d957-a396-ff5eb3e50000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/huijia-lin” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968010326,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968010326,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f50a-d957-a396-ff5eb3e50000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369d-d23f-a3ff-f6bfc4c70000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Huijia Lin&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369d-d23f-a3ff-f6bfc4c20000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Huijia Lin&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”border-top:none;width:128pt”&gt;University of Washington&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-top:none;border-left:none;width:151pt”&gt;Large Scale Multiparty Silent Preprocessing for MPC from LPN&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/hamed-nemati” data-cms-id=”00000196-f50d-d5f3-af9e-f5bd00050000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/hamed-nemati” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968031219,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968031219,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f50d-d5f3-af9e-f5bd00050000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369e-dd34-a3ff-7fdf17bf0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Hamed Nemati&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369e-dd34-a3ff-7fdf17ba0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Hamed Nemati&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”border-top:none;width:128pt”&gt;KTH Royal Institute of Technology&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-top:none;border-left:none;width:151pt”&gt;Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/karl-palmskog” data-cms-id=”00000196-f50e-d5f3-af9e-f5bf57800000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/karl-palmskog” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968042791,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968042791,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f50e-d5f3-af9e-f5bf57800000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369e-d23f-a3ff-f6bf4e480000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Karl Palmskog&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369e-d23f-a3ff-f6bf4e400000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Karl Palmskog&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”border-top:none;width:128pt”&gt;KTH Royal Institute of Technology&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-top:none;border-left:none;width:151pt”&gt;Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/chris-piekert” data-cms-id=”00000196-f507-d5f3-af9e-f5b794a90000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/chris-piekert” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968060521,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968060521,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f507-d5f3-af9e-f5b794a90000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369e-d23f-a3ff-f6bf8d3f0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Chris Piekert&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369e-d23f-a3ff-f6bf8d390000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Chris Piekert&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”border-top:none;width:128pt”&gt;University of Michigan, Ann Arbor&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-top:none;border-left:none;width:151pt”&gt;Practical Third-Generation FHE and Bootstrapping&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/dimitrios-skarlatos” data-cms-id=”00000196-f515-d957-a396-ff5f86bf0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/dimitrios-skarlatos” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968074223,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968074223,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f515-d957-a396-ff5f86bf0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369e-d23f-a3ff-f6bfc4de0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Dimitrios Skarlatos&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369e-d23f-a3ff-f6bfc4d80000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Dimitrios Skarlatos&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”border-top:none;width:128pt”&gt;Carnegie Mellon University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-top:none;border-left:none;width:151pt”&gt;Scale-Out FHE LLMs on GPUs&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/vinod-vaikuntanathan” data-cms-id=”00000196-f51a-d5f3-af9e-f5bf81dc0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/vinod-vaikuntanathan” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968085679,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968085679,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f51a-d5f3-af9e-f5bf81dc0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369e-d23f-a3ff-f6bff7370000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Vinod Vaikuntanathan&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369e-d23f-a3ff-f6bff7320000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Vinod Vaikuntanathan&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”border-top:none;width:128pt”&gt;Massachusetts Institute of Technology&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-top:none;border-left:none;width:151pt”&gt;Can Quantum Computers (Really) Factor?&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/daniel-wichs” data-cms-id=”00000196-f512-d5f3-af9e-f5b7dc450000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/daniel-wichs” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968101847,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968101847,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f512-d5f3-af9e-f5b7dc450000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369f-d23f-a3ff-f6bf2a1a0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Daniel Wichs&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369f-d23f-a3ff-f6bf2a120000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Daniel Wichs&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”border-top:none;width:128pt”&gt;Northeastern University&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-top:none;border-left:none;width:151pt”&gt;Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/david-wu” data-cms-id=”00000196-f51c-d957-a396-ff5e295c0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/david-wu” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968115140,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968115140,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f51c-d957-a396-ff5e295c0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369f-d23f-a3ff-f6bf66700000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;David Wu&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369f-d23f-a3ff-f6bf666a0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;David Wu&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”171″ style=”border-top:none;width:128pt”&gt;University Of Texas At Austin&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”202″ style=”border-top:none;border-left:none;width:151pt”&gt;Fast Private Information Retrieval and More using Homomorphic Encryption&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;

Sustainability

&lt;tbody&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;Recipient&lt;/b&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;University&lt;/b&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;b&gt;Research title&lt;/b&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/meeyoung-cha” data-cms-id=”00000196-f522-d957-a396-ff7e706b0000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/meeyoung-cha” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968131452,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968131452,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f522-d957-a396-ff7e706b0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369f-d23f-a3ff-f6bfa3c00000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Meeyoung Cha&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369f-d23f-a3ff-f6bfa3ba0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Meeyoung Cha&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”190″ style=”border-left:none;width:143pt”&gt;Max Planck Institute&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”219″ style=”border-left:none;width:164pt”&gt;Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/jingrui-he” data-cms-id=”00000196-f520-d5f3-af9e-f5b5e8c40000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/jingrui-he” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968175615,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968175615,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f520-d5f3-af9e-f5b5e8c40000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-369f-dd34-a3ff-7fdfd7930000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Jingrui He&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-369f-dd34-a3ff-7fdfd78d0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Jingrui He&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”190″ style=”border-top:none;border-left:none;width:143pt”&gt;University of Illinois at UrbanaChampaign&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”219″ style=”border-top:none;border-left:none;width:164pt”&gt;Foundation Model Enabled Earths Ecosystem Monitoring&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/pedro-lopes” data-cms-id=”00000196-f51f-d957-a396-ff5f2bc00000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/pedro-lopes” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968193127,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968193127,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f51f-d957-a396-ff5f2bc00000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-36a0-dd34-a3ff-7ff395080000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Pedro Lopes&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-36a0-dd34-a3ff-7ff394ff0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Pedro Lopes&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”190″ style=”border-top:none;border-left:none;width:143pt”&gt;University of Chicago&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl65″ width=”219″ style=”border-top:none;border-left:none;width:164pt”&gt;AI-powered Tools that Enable Engineers to Make &amp;amp; Re-make Sustainable Hardware&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=”1″ rowspan=”1″&gt;&lt;a href=”https://www.amazon.science/research-awards/recipients/cheng-yaw-low” data-cms-id=”00000196-f524-d5f3-af9e-f5b5e2c60000″ data-cms-href=”https://www.amazon.science/research-awards/recipients/cheng-yaw-low” link-data=”{&amp;quot;cms.site.owner&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000016e-17e7-d263-a5fe-fff724f30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;ae3387cc-b875-31b7-b82d-63fd8d758c20&amp;quot;},&amp;quot;cms.content.publishDate&amp;quot;:1748968205207,&amp;quot;cms.content.publishUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;cms.content.updateDate&amp;quot;:1748968205207,&amp;quot;cms.content.updateUser&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;0000017f-b709-d2ad-a97f-f7fd25e30000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;6aa69ae1-35be-30dc-87e9-410da9e1cdcc&amp;quot;},&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;link&amp;quot;:{&amp;quot;rekognitionVideo.timeFrameMetadata&amp;quot;:[],&amp;quot;attributes&amp;quot;:[],&amp;quot;item&amp;quot;:{&amp;quot;_ref&amp;quot;:&amp;quot;00000196-f524-d5f3-af9e-f5b5e2c60000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;07a8c4fb-2e5e-394d-8c44-6bb1ed9f87f6&amp;quot;},&amp;quot;_id&amp;quot;:&amp;quot;00000197-36a0-d23f-a3ff-f6abc7f20000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;c3f0009d-3dd9-3762-acac-88c3a292c6b2&amp;quot;},&amp;quot;linkText&amp;quot;:&amp;quot;Cheng Yaw Low&amp;quot;,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.enhancementAlignment&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs.overlayText&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.hbs._preset&amp;quot;:null,&amp;quot;theme.0000016e-17e8-d263-a5fe-fff8347d0000.:core:enhancement:Enhancement.amp.hbs._preset&amp;quot;:null,&amp;quot;_id&amp;quot;:&amp;quot;00000197-36a0-d23f-a3ff-f6abc7ed0000&amp;quot;,&amp;quot;_type&amp;quot;:&amp;quot;809caec9-30e2-3666-8b71-b32ddbffc288&amp;quot;}”&gt;Cheng Yaw Low&lt;/a&gt;&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl67″ width=”190″ style=”width:143pt”&gt;Max Planck Institute&lt;/td&gt;&lt;td colspan=”1″ rowspan=”1″ class=”xl67″ width=”219″ style=”width:164pt”&gt;Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;

Tags: Generative AI

Read More