*Equal Contributors
Data from wearable sensors (e.g., heart rate, step count) can be used to model mood patterns. We characterize feature representations and modeling strategies with multi-modal discrete time series data for mood pattern classification with a large dataset with naturalistic missingness (n=116,819 participants) using 12 wearable data streams, with a focus on capturing periodic trends in data. Considering both performance and robustness, periodicity-based aggregate feature representations with gradient boosting models outperformed other representations and architectures…Apple Machine Learning Research
Towards Time-Series Reasoning with LLMs
Multi-modal large language models (MLLMs) have enabled numerous advances in understanding and reasoning in domains like vision, but we have not yet seen this broad success for time-series. Although prior works on time-series MLLMs have shown promising performance in time-series forecasting, very few works show how an LLM could be used for time-series reasoning in natural language. We propose a novel multi-modal time-series LLM approach that learns generalizable information across various domains with powerful zero-shot performance. First, we train a lightweight time-series encoder on top of an…Apple Machine Learning Research
Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling
Diffusion models have emerged as a powerful tool for generating high-quality images from textual descriptions. Despite their successes, these models often exhibit limited diversity in the sampled images, particularly when sampling with a high classifier-free guidance weight. To address this issue, we present Kaleido, a novel approach that enhances the diversity of samples by incorporating autoregressive latent priors. Kaleido integrates an autoregressive language model that encodes the original caption and generates latent variables, serving as abstract and intermediary representations for…Apple Machine Learning Research
Speech is More Than Words: Do Speech-to-Text Translation Systems Leverage Prosody?
This paper was accepted at the Ninth Conference on Machine Translation (WMT24) at EMNLP 2024.
The prosody of a spoken utterance, including features like stress, intonation and rhythm, can significantly affect the underlying semantics, and as a consequence can also affect its textual translation. Nevertheless, prosody is rarely studied within the context of speech-to-text translation (S2TT) systems. In particular, end-to-end (E2E) systems have been proposed as well-suited for prosody-aware translation because they have direct access to the speech signal when making translation decisions, but…Apple Machine Learning Research
Instance-Optimal Private Density Estimation in the Wasserstein Distance
Estimating the density of a distribution from samples is a fundamental problem in statistics. In many practical settings, the Wasserstein distance is an appropriate error metric for density estimation. For example, when estimating population densities in a geographic region, a small Wasserstein distance means that the estimate is able to capture roughly where the population mass is. In this work we study differentially private density estimation in the Wasserstein distance. We design and analyze instance-optimal algorithms for this problem that can adapt to easy instances.
For distributions…Apple Machine Learning Research
Multimodal Autoregressive Pre-Training of Large Vision Encoders
*Equal Contributors
A dominant paradigm in large multimodal models is to pair a large language de- coder with a vision encoder. While it is well-known how to pre-train and tune language decoders for multimodal tasks, it is less clear how the vision encoder should be pre-trained. A de facto standard is to pre-train the vision encoder with a discriminative objective, such as contrastive loss. This causes a mismatch between pre-training and the generative autoregressive downstream task. At the same time, following their success in the language domain, autoregressive image models have been shown…Apple Machine Learning Research
Memory-Retaining Finetuning via Distillation
This paper was accepted at the Fine-Tuning in Modern Machine Learning: Principles and Scalability (FITML) Workshop at NeurIPS 2024.
Large language models (LLMs) pretrained on large corpora of internet text possess much of the world’s knowledge. Following pretraining, one often needs to conduct continued pretraining on certain capabilities, such as math and coding, or “posttraining” (a.k.a., alignment) techniques to make the models follow users’ instructions and align them with human preferences. One challenge during these finetuning stages is that the model can lose the pretraining knowledge…Apple Machine Learning Research
Private Online Learning via Lazy Algorithms
We study the problem of private online learning, specifically, online prediction from experts (OPE) and online convex optimization (OCO). We propose a new transformation that transforms lazy online learning algorithms into private algorithms. We apply our transformation for differentially private OPE and OCO using existing lazy algorithms for these problems. Our final algorithms obtain regret which significantly improves the regret in the high privacy regime ε≪1varepsilon ll 1ε≪1, obtaining Tlogd+T1/3log(d)/ε2/3sqrt{T log d} + T^{1/3} log(d)/varepsilon^{2/3}Tlogd+T1/3log(d)/ε2/3 for…Apple Machine Learning Research
Private Stochastic Convex Optimization with Heavy Tails: Near-Optimality from Simple Reductions
We study the problem of differentially private stochastic convex optimization (DP-SCO) with heavy-tailed gradients, where we assume a kthk^{text{th}}kth-moment bound on the Lipschitz constants of sample functions, rather than a uniform bound. We propose a new reduction-based approach that enables us to obtain the first optimal rates (up to logarithmic factors) in the heavy-tailed setting, achieving error G2⋅1n+Gk⋅(dnε)1−1kG_2 cdot frac 1 {sqrt n} + G_k cdot (frac{sqrt d}{nvarepsilon})^{1 – frac 1 k}G2⋅n1+Gk⋅(nεd)1−k1 under (ε,δ)(varepsilon, delta)(ε,δ)-approximate…Apple Machine Learning Research
Faster Algorithms for User-Level Private Stochastic Convex Optimization
We study private stochastic convex optimization (SCO) under user-level differential privacy (DP) constraints. In this setting, there are nnn users, each possessing mmm data items, and we need to protect the privacy of each user’s entire collection of data items. Existing algorithms for user-level DP SCO are impractical in many large-scale machine learning scenarios because: (i) they make restrictive assumptions on the smoothness parameter of the loss function and require the number of users to grow polynomially with the dimension of the parameter space; or (ii) they are prohibitively slow…Apple Machine Learning Research