MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs

We introduce MIA-Bench, a new benchmark designed to evaluate multimodal large language models (MLLMs) on their ability to strictly adhere to complex instructions. Our benchmark comprises a diverse set of 400 image-prompt pairs, each crafted to challenge the models’ compliance with layered instructions in generating accurate responses that satisfy specific requested patterns. Evaluation results from a wide array of state-of-the-art MLLMs reveal significant variations in performance, highlighting areas for improvement in instruction fidelity. Additionally, we create extra training data and…Apple Machine Learning Research

Optimization Without Retraction on the Random Generalized Stiefel Manifold

Optimization over the set of matrices X that satisfy X^TBX = Ip, referred to as the generalized Stiefel manifold, appears in many applications involving sampled covariance matrices such as the canonical correlation analysis (CCA), independent component analysis (ICA), and the generalized eigenvalue problem (GEVP). Solving these problems is typically done by iterative methods that require a fully formed B. We propose a cheap stochastic iterative method that solves the optimization problem while having access only to a random estimates of B. Our method does not enforce the constraint in every…Apple Machine Learning Research

Revisiting Non-separable Binary Classification and its Applications in Anomaly Detection

The inability to linearly classify XOR has motivated much of deep learning. We revisit this age-old problem and show that linear classification of XOR is indeed possible. Instead of separating data between halfspaces, we propose a slightly different paradigm, equality separation, that adapts the SVM objective to distinguish data within or outside the margin. Our classifier can then be integrated into neural network pipelines with a smooth approximation. From its properties, we intuit that equality separation is suitable for anomaly detection. To formalize this notion, we introduce closing…Apple Machine Learning Research

Applying RLAIF for Code Generation with API-usage in Lightweight LLMs

This paper was accepted at the Natural Language Reasoning and Structured Explanations workshop at ACL 2024.
Reinforcement Learning from AI Feedback (RLAIF) has demonstrated significant potential across various domains, including mitigating harm in LLM outputs, enhancing text summarization, and mathematical reasoning. This paper introduces an RLAIF framework for improving the code generation abilities of lightweight (Apple Machine Learning Research

How Far Can Transformers Reason? The Locality Barrier and Inductive Scratchpad

Can Transformers predict new syllogisms by composing established ones? More generally, what type of targets can be learned by such models from scratch? Recent works show that Transformers can be Turing-complete in terms of expressivity, but this does not address the learnability objective. This paper puts forward the notion of distribution locality to capture when weak learning is efficiently achievable by regular Transformers, where the locality measures the least number of tokens required in addition to the tokens histogram to correlate nontrivially with the target. As shown experimentally…Apple Machine Learning Research

Towards Robust Evaluation: A Comprehensive Taxonomy of Datasets and Metrics for Open Domain Question Answering in the Era of Large Language Models

Open Domain Question Answering (ODQA) within natural language processing involves building systems that answer factual questions using large-scale knowledge corpora. Recent advances stem from the confluence of several factors, such as large-scale training datasets, deep learning techniques, and the rise of large language models. High-quality datasets are used to train models on realistic scenarios and enable the evaluation of the system on potentially unseen data. Standardized metrics facilitate comparisons between different ODQA systems, allowing researchers to objectively track advancements…Apple Machine Learning Research

Conformer-Based Speech Recognition on Extreme Edge-Computing Devices

This paper was accepted at the Industry Track at NAACL 2024.
With increasingly more powerful compute capabilities and resources in today’s devices, traditionally compute-intensive automatic speech recognition (ASR) has been moving from the cloud to devices to better protect user privacy. However, it is still challenging to implement on-device ASR on resource-constrained devices, such as smartphones, smart wearables, and other small home automation devices. In this paper, we propose a series of model architecture adaptions, neural network graph transformations, and numerical optimizations to…Apple Machine Learning Research

Comparative Analysis of Personalized Voice Activity Detection Systems: Assessing Real-World Effectiveness

Voice activity detection (VAD) is a critical component in various applications such as speech recognition, speaker identification, and hands-free communication systems. With the increasing demand for personalized and context-aware technologies, the need for effective personalized VAD systems has become paramount. In this paper, we present a comparative analysis of Personalized Voice Activity Detection (PVAD) systems to assess their real-world effectiveness. We introduce a comprehensive approach to assess PVAD systems, incorporating various performance metrics such as frame-level and…Apple Machine Learning Research

Multimodal Large Language Models with Fusion Low Rank Adaptation for Device Directed Speech Detection

Although Large Language Models (LLMs) have shown promise for human-like conversations, they are primarily pre-trained on text data. Incorporating audio or video improves performance, but collecting large-scale multimodal data and pre-training multimodal LLMs is challenging. To this end, we propose a Fusion Low Rank Adaptation (FLoRA) technique that efficiently adapts a pre-trained unimodal LLM to consume new, previously unseen modalities via low rank adaptation. For device-directed speech detection, using FLoRA, the multimodal LLM achieves 22% relative reduction in equal error rate (EER) over…Apple Machine Learning Research