Federated Learning for Speech Recognition: Revisiting Current Trends Towards Large-Scale ASR

This paper was accepted at the Federated Learning in the Age of Foundation Models workshop at NeurIPS 2023.
While automatic speech recognition (ASR) has witnessed remarkable achievements in recent years, it has not garnered a widespread focus within the federated learning (FL) and differential privacy (DP) communities. Meanwhile, ASR is also a well suited benchmark for FL and DP as there is (i) a natural data split across users by using speaker information; (ii) heterogeneous data across speakers close to practical settings; (iii) interplay between acoustic and language modeling; (iv) and it…Apple Machine Learning Research

Swap Agnostic Learning, or Characterizing Omniprediction via Multicalibration

A recent line of work shows that notions of multigroup fairness imply surprisingly strong notions of omniprediction: loss minimization guarantees that apply not just for a specific loss function, but for any loss belonging to a large family of losses. While prior work has derived various notions of omniprediction from multigroup fairness guarantees of varying strength, it was unknown whether the connection goes in both directions. In this work, we answer this question in the affirmative, establishing equivalences between notions of multicalibration and omniprediction. The new definitions that…Apple Machine Learning Research

SAM-CLIP: Merging Vision Foundation Models towards Semantic and Spatial Understanding

This paper was accepted at the UniReps Workshop at NeurIPS 2023.
The landscape of publicly available vision foundation models (VFMs), such as CLIP and Segment Anything Model (SAM), is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their pre-training objectives. For instance, CLIP excels in semantic understanding, while SAM specializes in spatial understanding for segmentation. In this work, we introduce a simple recipe to efficiently merge VFMs into a unified model that absorbs their expertise. Our method integrates techniques of multi-task learning, continual…Apple Machine Learning Research

Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs

Recent work in Natural Language Processing and Computer Vision has been using textual information – e.g., entity names and descriptions – available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality of textual information are comparatively scarce. To address this issue, we introduce the novel task of automatic Knowledge Graph Enhancement (KGE) and perform a thorough investigation on bridging the gap in both the quantity and quality of textual information between English and non-English…Apple Machine Learning Research

What Algorithms can Transformers Learn? A Study in Length Generalization

This paper was accepted at the MATH workshop at NeurIPS 2023.
Large language models exhibit surprising emergent generalization properties, yet also struggle on many simple reasoning tasks such as arithmetic and parity. This raises the question of if and when Transformer models can learn the true algorithm for solving a task. We study the scope of Transformers’ abilities in the specific setting of length generalization on algorithmic tasks. Here, we propose a unifying framework to understand when and how Transformers can exhibit strong length generalization on a given task. Specifically, we…Apple Machine Learning Research

TiC-CLIP: Continual Training of CLIP Models

This paper was accepted to the workshop on Distribution Shifts in NeurIPS 2023.
Large-scale training of models has become exceedingly more expensive. In an ever changing world where Petabytes of new data is generated every day, we want to be able to continually train models. In this paper, we create a benchmark for continual large-scale training of CLIP models where the data distribution varies only by time. Compared with traditional continual learning literature, there is no hard separation of tasks, i.e., we assume an infinite stream of data in a canonical format arrives that exhibits…Apple Machine Learning Research

Diffusion Models as Masked Audio-Video Learners

This paper was accepted at the Machine Learning for Audio Workshop at NeurIPS 2023.
Over the past several years, the synchronization between audio and visual signals has been leveraged to learn richer audio-visual representations. Aided by the large availability of unlabeled videos, many unsupervised training frameworks have demonstrated impressive results in various downstream audio and video tasks. Recently, Masked Audio-Video Learners (MAViL) has emerged as a state-of-the-art audio-video pre-training framework. MAViL couples contrastive learning with masked autoencoding to jointly…Apple Machine Learning Research

How to Scale Your EMA

*=Equal Contributors
Preserving training dynamics across batch sizes is an important tool for practical machine learning as it enables the trade-off between batch size and wall-clock time. This trade-off is typically enabled by a scaling rule; for example, in stochastic gradient descent, one should scale the learning rate linearly with the batch size. Another important machine learning tool is the model EMA, a functional copy of a target model whose parameters move towards those of its target model according to an Exponential Moving Average (EMA) at a rate parameterized by a momentum…Apple Machine Learning Research