Denoising Diffusion models have demonstrated their proficiency for generative sampling. However, generating good samples often requires many iterations. Consequently, techniques such as binary time-distillation (BTD) have been proposed to reduce the number of network calls for a fixed architecture. In this paper, we introduce TRAnsitive Closure Time-distillation (TRACT), a new method that extends BTD. For single step diffusion,TRACT improves FID by up to 2.4x on the same architecture, and achieves new single-step Denoising Diffusion Implicit Models (DDIM) state-of-the-art FID (7.4 for…Apple Machine Learning Research
Variable Attention Masking for Configurable Transformer Transducer Speech Recognition
This work studies the use of attention masking in transformer transducer based speech recognition for building a single configurable model for different deployment scenarios. We present a comprehensive set of experiments comparing fixed masking, where the same attention mask is applied at every frame, with chunked masking, where the attention mask for each frame is determined by chunk boundaries, in terms of recognition accuracy and latency. We then explore the use of variable masking, where the attention masks are sampled from a target distribution at training time, to build models that can…Apple Machine Learning Research
Self Supervision Does Not Help Natural Language Supervision at Scale
Self supervision and natural language supervision have emerged as two exciting ways to train general purpose image encoders which excel at a variety of downstream tasks. Recent works such as M3AE [31] and SLIP [64] have suggested that these approaches can be effectively combined, but most notably their results use small (100M samples) that is commonly used for these approaches. Here we investigate whether a similar approach can be effective when trained with a much larger amount of data. We find…Apple Machine Learning Research
Pre-trained Model Representations and their Robustness against Noise for Speech Emotion Analysis
Pre-trained model representations have demonstrated state-of-the-art performance in speech recognition, natural language processing, and other applications. Speech models, such as Bidirectional Encoder Representations from Transformers (BERT) and Hidden units BERT (HuBERT), have enabled generating lexical and acoustic representations to benefit speech recognition applications. We investigated the use of pre-trained model representations for estimating dimensional emotions, such as activation, valence, and dominance, from speech. We observed that while valence may rely heavily on lexical…Apple Machine Learning Research
RGI: Robust GAN-inversion for Mask-free Image Inpainting and Unsupervised Pixel-wise Anomaly Detection
Generative adversarial networks (GANs), trained on a large-scale image dataset, can be a good approximator of the natural image manifold. GAN-inversion, using a pre-trained generator as a deep generative prior, is a promising tool for image restoration under corruptions. However, the performance of GAN-inversion can be limited by a lack of robustness to unknown gross corruptions, i.e., the restored image might easily deviate from the ground truth. In this paper, we propose a Robust GAN-inversion (RGI) method with a provable robustness guarantee to achieve image restoration under unknown…Apple Machine Learning Research
I See What You Hear: A Vision-inspired Method to Localize Words
This paper explores the possibility of using visual object detection techniques for word localization in speech data. Object detection has been thoroughly studied in the contemporary literature for visual data. Noting that an audio can be interpreted as a 1-dimensional image, object localization techniques can be fundamentally useful for word localization. Building upon this idea, we propose a lightweight solution for word detection and localization. We use bounding box regression for word localization, which enables our model to detect the occurrence, offset, and duration of keywords in a…Apple Machine Learning Research
PAEDID: Patch Autoencoder-based Deep Image Decomposition for Unsupervised Anomaly Detection
Unsupervised pixel-level defective region segmentation is an important task in image-based anomaly detection for various industrial applications. The state-of-the-art methods have their own advantages and limitations: matrix-decomposition-based methods are robust to noise but lack complex background image modeling capability; representation-based methods are good at defective region localization but lack accuracy in defective region shape contour extraction; reconstruction-based methods detected defective region match well with the ground truth defective region shape contour but are noisy. To…Apple Machine Learning Research
From User Perceptions to Technical Improvement: Enabling People Who Stutter to Better Use Speech Recognition
Consumer speech recognition systems do not work as well for many people with speech differences, such as stuttering, relative to the rest of the general population. However, what is not clear is the degree to which these systems do not work, how they can be improved, or how much people want to use them. In this paper, we first address these questions using results from a 61-person survey from people who stutter and find participants want to use speech recognition but are frequently cut off, misunderstood, or speech predictions do not represent intent. In a second study, where 91 people who…Apple Machine Learning Research
Robust Hybrid Learning With Expert Augmentation
Hybrid modelling reduces the misspecification of expert models by combining them with machine learning (ML) components learned from data. Similarly to many ML algorithms, hybrid model performance guarantees are limited to the training distribution. Leveraging the insight that the expert model is usually valid even outside the training domain, we overcome this limitation by introducing a hybrid data augmentation strategy termed textit{expert augmentation}. Based on a probabilistic formalization of hybrid modelling, we demonstrate that expert augmentation, which can be incorporated into…Apple Machine Learning Research
MAST: Masked Augmentation Subspace Training for Generalizable Self-Supervised Priors
Recent Self-Supervised Learning (SSL) methods are able to learn feature representations that are invariant to different data augmentations, which can then be transferred to downstream tasks of interest. However, different downstream tasks require different invariances for their best performance, so the optimal choice of augmentations for SSL depends on the target task. In this paper, we aim to learn self-supervised features that generalize well across a variety of downstream tasks (e.g., object classification, detection and instance segmentation) without knowing any task information…Apple Machine Learning Research