M2R2: Mixture of Multi-Rate Residuals for Efficient Transformer Inference

Residual transformations enhance the representational depth and expressive power of large language models (LLMs). However, applying static residual transformations across all tokens in auto-regressive generation leads to a suboptimal trade-off between inference efficiency and generation fidelity. Existing methods, including Early Exiting, Skip Decoding, and Mixture-of-Depth address this by modulating the residual transformation based on token-level complexity. Nevertheless, these approaches predominantly consider the distance traversed by tokens through the model layers, neglecting the…Apple Machine Learning Research

Speaker-IPL: Unsupervised Learning of Speaker Characteristics with i-Vector Based Pseudo-Labels

Iterative self-training, or iterative pseudo-labeling (IPL) — using an improved model from the current iteration to provide pseudo-labels for the next iteration — has proven to be a powerful approach to enhance the quality of speaker representations. Recent applications of IPL in unsupervised speaker recognition start with representations extracted from very elaborate self-supervised methods (e.g., DINO). However, training such strong self-supervised models is not straightforward (they require hyper-parameter tuning and may not generalize to out-of-domain data) and, moreover, may not be…Apple Machine Learning Research

Towards Automatic Assessment of Self-Supervised Speech Models Using Rank

This study explores using embedding rank as an unsupervised evaluation metric for general-purpose speech encoders trained via self-supervised learning (SSL). Traditionally, assessing the performance of these encoders is resource-intensive and requires labeled data from the downstream tasks. Inspired by the vision domain, where embedding rank has shown promise for evaluating image encoders without tuning on labeled downstream data, this work examines its applicability in the speech domain, considering the temporal nature of the signals. The findings indicate rank correlates with downstream…Apple Machine Learning Research

Novel View Synthesis with Pixel-Space Diffusion Models

Synthesizing a novel view from a single input image is a challenging task. Traditionally, this task was approached by estimating scene depth, warping, and inpainting, with machine learning models enabling parts of the pipeline. More recently, generative models are being increasingly employed in novel view synthesis (NVS), often encompassing the entire end-to-end system. In this work, we adapt a modern diffusion model architecture for end-to-end NVS in the pixel space, substantially outperforming previous state-of-the-art (SOTA) techniques. We explore different ways to encode geometric…Apple Machine Learning Research

dMel: Speech Tokenization Made Simple

Large language models have revolutionized natural language processing by leveraging self-supervised pretraining on vast textual data. Inspired by this success, researchers have investigated complicated speech tokenization methods to discretize continuous speech signals so that language modeling techniques can be applied to speech data. However, existing approaches either model semantic (content) tokens, potentially losing acoustic information, or model acoustic tokens, risking the loss of semantic (content) information. Having multiple token types also complicates the architecture and requires…Apple Machine Learning Research

MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs

We introduce MIA-Bench, a new benchmark designed to evaluate multimodal large language models (MLLMs) on their ability to strictly adhere to complex instructions. Our benchmark comprises a diverse set of 400 image-prompt pairs, each crafted to challenge the models’ compliance with layered instructions in generating accurate responses that satisfy specific requested patterns. Evaluation results from a wide array of state-of-the-art MLLMs reveal significant variations in performance, highlighting areas for improvement in instruction fidelity. Additionally, we create extra training data and…Apple Machine Learning Research

Grounding Multimodal Large Language Models in Actions

Multimodal Large Language Models (MLLMs) have demonstrated a wide range of capabilities across many domains, including Embodied AI. In this work, we study how to best ground a MLLM into different embodiments and their associated action spaces, with the goal of leveraging the multimodal world knowledge of the MLLM. We first generalize a number of methods through a unified architecture and the lens of action space adaptors. For continuous actions, we show that a learned tokenization allows for sufficient modeling precision, yielding the best performance on downstream tasks. For discrete actions…Apple Machine Learning Research

Wearable Accelerometer Foundation Models for Health via Knowledge Distillation

Modern wearable devices can conveniently record various biosignals in the many different environments of daily living, enabling a rich view of individual health. However, not all biosignals are the same: high-fidelity biosignals, such as photoplethysmogram (PPG), contain more physiological information, but require optical sensors with a high power footprint. Alternatively, a lower-fidelity biosignal such as accelerometry has a significantly smaller power footprint and is available in almost any wearable device. While accelerometry is widely used for activity recognition and fitness, it is less…Apple Machine Learning Research

Evaluating Sample Utility for Data Selection by Mimicking Model Weights

Foundation models are trained on large-scale web-crawled datasets, which often contain noise, biases, and irrelevant information. This motivates the use of data selection techniques, which can be divided into model-free variants — relying on heuristic rules and downstream datasets — and model-based, e.g., using influence functions. The former can be expensive to design and risk introducing unwanted dependencies, while the latter are often computationally prohibitive. Instead, we propose an efficient, model-based approach using the Mimic Score, a new data quality metric that leverages the…Apple Machine Learning Research

From Multimodal LLMs to Generalist Embodied Agents: Methods and Lessons

We examine the capability of Multimodal Large Language Models (MLLMs) to tackle diverse domains that extend beyond the traditional language and vision tasks these models are typically trained on. Specifically, our focus lies in areas such as Embodied AI, Games, UI Control, and Planning. To this end, we introduce a process of adapting an MLLM to a Generalist Embodied Agent (GEA). GEA is a single unified model capable of grounding itself across these varied domains through a multi-embodiment action tokenizer. GEA is trained with supervised learning on a large dataset of embodied experiences and…Apple Machine Learning Research