A person’s tone of voice can tell you a lot about how they’re feeling. Not surprisingly, emotion recognition is an increasingly popular conversational-AI research topic.Read More
Should Alexa read “2/3” as “two-thirds” or “February Third”?: The science of text normalization
Text normalization is an important process in conversational AI. If an Alexa customer says, “book me a table at 5:00 p.m.”, the automatic speech recognizer will transcribe the time as “five p m”. Before a skill can handle this request, “five p m” will need to be converted to “5:00PM”. Once Alexa has processed the request, it needs to synthesize the response — say, “Is 6:30 p.m. okay?” Here, 6:30PM will be converted to “six thirty p m” for the text-to-speech synthesizer. We call the process of converting “5:00PM” to “five p m” text normalization and its counterpart — converting “five p m” to “5:00PM” — inverse text normalization.Read More
Training a Machine Learning Model in English Improves Its Performance in Japanese
Recently, we published a paper showing that training a neural network to do language processing in English, then retraining it in German, drastically reduces the amount of German-language training data required to achieve a given level of performance.Read More
How We Add New Skills to Alexa’s Name-Free Skill Selector
In the past year, we’ve introduced what we call name-free skill interaction for Alexa. In countries where the service has rolled out, a customer who wants to, say, order a car can just say, “Alexa, get me a car”, instead of having to specify the name of a ride-sharing provider.Read More
“Alexa, Turn Down the Lights and Play Music”: The Science of Handling Compound Requests
Traditionally, Alexa has interpreted customer requests according to their intents and slots. If you say, “Alexa, play ‘What’s Going On?’ by Marvin Gaye,” the intent should be PlayMusic, and “‘What’s Going On?’” and “Marvin Gaye” should fill the slots SongName and ArtistName.Read More
Training Speech Synthesizers on Data from Multiple Speakers
When a customer asks Alexa to play “Hey Jude”, and Alexa responds, “Playing ‘Hey Jude’ by the Beatles,” that response is generated by a text-to-speech (TTS) system, which converts textual inputs into synthetic-speech outputs…Read More
Using wake word acoustics to filter out background speech improves speech recognition by 15%
One of the ways that we’re always trying to improve Alexa’s performance is by teaching her to ignore speech that isn’t intended for her. At this year’s International Conference on Acoustics, Speech, and Signal Processing, my colleagues and I will present a new technique for doing this, which could complement the techniques that Alexa already uses.Read More
Two new papers discuss how Alexa recognizes sounds
Last year, Amazon announced the beta release of Alexa Guard, a new service that lets customers who are leaving the house instruct their Echo devices to listen for glass breaking or smoke and carbon dioxide alarms going off. At this year’s International Conference on Acoustics, Speech, and Signal Processing, our team is presenting several papers on sound detection. I wrote about one of them a few weeks ago, a new method for doing machine learning with unbalanced data sets.Read More
Signal processor improves Echo’s bass response, loudness, and speech recognition accuracy
Multiband dynamics processing, which separately modifies volume in different frequency bands of an audio signal, is known to improve listeners’ audio experiences. But in the context of voice-controlled systems like the Amazon Echo family of products, it can also improve automatic speech recognition by making echo cancellation easier.Read More
Cross-lingual transfer learning for bootstrapping AI systems reduces new-language data requirements
Transfer learning is the technique of adapting a machine learning model trained on abundant data to a new context in which training data is sparse. On the Alexa team, we’ve explored transfer learning as a way to bootstrap new functions and to add new classification categories to existing machine learning systems.Read More