Best practices for data enrichment

Best practices for data enrichment

At DeepMind, our goal is to make sure everything we do meets the highest standards of safety and ethics, in line with our Operating Principles. One of the most important places this starts with is how we collect our data. In the past 12 months, we’ve collaborated with Partnership on AI (PAI) to carefully consider these challenges, and have co-developed standardised best practices and processes for responsible human data collection.Read More

On the Expressivity of Markov Reward

Our main results prove that while reward can express many tasks, there exist instances of each task type that no Markov reward function can capture. We then provide a set of polynomial-time algorithms that construct a reward function which allows an agent to optimize tasks of each of these three types, and correctly determine when no such reward function exists.Read More