Letting robots manipulate cables

For humans, it can be challenging to manipulate thin flexible objects like ropes, wires, or cables. But if these problems are hard for humans, they are nearly impossible for robots. As a cable slides between the fingers, its shape is constantly changing, and the robot’s fingers must be constantly sensing and adjusting the cable’s position and motion.

Standard approaches have used a series of slow and incremental deformations, as well as mechanical fixtures, to get the job done. Recently, a group of researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) pursued the task from a different angle, in a manner that more closely mimics us humans. The team’s new system uses a pair of soft robotic grippers with high-resolution tactile sensors (and no added mechanical constraints) to successfully manipulate freely moving cables.

One could imagine using a system like this for both industrial and household tasks, to one day enable robots to help us with things like tying knots, wire shaping, or even surgical suturing. 

The team’s first step was to build a novel two-fingered gripper. The opposing fingers are lightweight and quick moving, allowing nimble, real-time adjustments of force and position. On the tips of the fingers are vision-based “GelSight” sensors, built from soft rubber with embedded cameras. The gripper is mounted on a robot arm, which can move as part of the control system.

The team’s second step was to create a perception-and-control framework to allow cable manipulation. For perception, they used the GelSight sensors to estimate the pose of the cable between the fingers, and to measure the frictional forces as the cable slides. Two controllers run in parallel: one modulates grip strength, while the other adjusts the gripper pose to keep the cable within the gripper.

When mounted on the arm, the gripper could reliably follow a USB cable starting from a random grasp position. Then, in combination with a second gripper, the robot can move the cable “hand over hand” (as a human would) in order to find the end of the cable. It could also adapt to cables of different materials and thicknesses.

As a further demo of its prowess, the robot performed an action that humans routinely do when plugging earbuds into a cell phone. Starting with a free-floating earbud cable, the robot was able to slide the cable between its fingers, stop when it felt the plug touch its fingers, adjust the plug’s pose, and finally insert the plug into the jack. 

“Manipulating soft objects is so common in our daily lives, like cable manipulation, cloth folding, and string knotting,” says Yu She, MIT postdoc and lead author on a new paper about the system. “In many cases, we would like to have robots help humans do this kind of work, especially when the tasks are repetitive, dull, or unsafe.” 

String me along 

Cable following is challenging for two reasons. First, it requires controlling the “grasp force” (to enable smooth sliding), and the “grasp pose” (to prevent the cable from falling from the gripper’s fingers).  

This information is hard to capture from conventional vision systems during continuous manipulation, because it’s usually occluded, expensive to interpret, and sometimes inaccurate. 

What’s more, this information can’t be directly observed with just vision sensors, hence the team’s use of tactile sensors. The gripper’s joints are also flexible — protecting them from potential impact. 

The algorithms can also be generalized to different cables with various physical properties like material, stiffness, and diameter, and also to those at different speeds. 

When comparing different controllers applied to the team’s gripper, their control policy could retain the cable in hand for longer distances than three others. For example, the “open-loop” controller only followed 36 percent of the total length, the gripper easily lost the cable when it curved, and it needed many regrasps to finish the task. 

Looking ahead 

The team observed that it was difficult to pull the cable back when it reached the edge of the finger, because of the convex surface of the GelSight sensor. Therefore, they hope to improve the finger-sensor shape to enhance the overall performance. 

In the future, they plan to study more complex cable manipulation tasks such as cable routing and cable inserting through obstacles, and they want to eventually explore autonomous cable manipulation tasks in the auto industry.

Yu She wrote the paper alongside MIT PhD students Shaoxiong Wang, Siyuan Dong, and Neha Sunil; Alberto Rodriguez, MIT associate professor of mechanical engineering; and Edward Adelson, the John and Dorothy Wilson Professor in the MIT Department of Brain and Cognitive Sciences

Read More

Empowering kids to address Covid-19 through coding

When schools around the world closed their doors due to the coronavirus pandemic, the team behind MIT App Inventor — a web-based, visual-programming environment that allows children to develop applications for smartphones and tablets — began thinking about how they could not only help keep children engaged and learning, but also empower them to create new tools to address the pandemic.

In April, the App Inventor team launched a new challenge that encourages children and adults around the world to build mobile technologies that could be used to help stem the spread of Covid-19, aid local communities, and provide moral support to people around the world.

“Many people, including kids, are locked down at home with little to do and with a sense of loss of control over their lives,” says Selim Tezel, a curriculum developer for MIT App Inventor. “We wanted to empower them to take action, be involved in a creative process, and do something good for their fellow citizens.”

Since the Coronavirus App Inventor Challenge launched this spring, there have been submissions from inventors ranging in age from 9 to 72 years and from coders around the globe, including New Zealand, the Democratic Republic of Congo, Italy, China, India, and Spain. While the App Inventor platform has historically been used in classrooms as an educational tool, Tezel and Hal Abelson, the Class of 1922 Professor in the Department of Electrical Engineering in Computer Science, explain that they have seen increased individual engagement with the platform during the pandemic, particularly on a global scale.

“The nice thing about App Inventor is that you’re learning about coding, but it also gives you something that you can actually do and a chance to contribute,” says Abelson. “It provides kids with an opportunity to say, ‘I’m not just learning, I’m doing a project, and it’s not only a project for me, it’s a project that can actually help other people.’ I think that can be very powerful.”

Winners are announced on a monthly basis and honor apps for creativity, design, and overall inventiveness. Challenge participants have addressed a wide variety of issues associated with the pandemic, from health and hygiene to mental health and education. For example, April’s Young Inventors of the Month, Bethany Chow and Ice Chow from Hong Kong, developed an app aimed at motivating users to stay healthy. Their app features a game that encourages players to adapt healthy habits by collecting points that they can use to defeat virtual viruses, as well as an optional location tracker function that can alert users if they have frequented a location that has a Covid-19 outbreak.

Akshaj Singhal, a 11-year-old from India, was selected as the June Inventor of the Month in the Young Inventors category, which includes children 12 years old and younger, for his app called Covid-19 Warrior. The app offers a host of features aimed at spreading awareness of Covid-19, including a game and quiz to test a user’s knowledge of the virus, as well as local daily Covid-19 news updates and information on how to make your own mask.

The challenge has attracted participants with varying levels of technical expertise, allowing aspiring coders a chance to hone and improve their skills. Prayanshi Garg, a 12-year-old from India, created her first app for the challenge, an educational quiz aimed at increasing awareness of Covid-19. Vansh Reshamwala, a 10-year-old from India, created an app that features a recording of his voice sharing information about ways to help prevent the spread of Covid-19 and thanking heroes for their efforts during the pandemic.

Participants have also been able to come together virtually to develop apps during a time when social interactions and team activities are limited. For example, three high school students from Singapore developed Maskeraid, an app that connects users in need of assistance with volunteers who are able to help with a variety of services.

“The ultimate goal is to engage our very creative App Inventor community of all ages and empower them during this time,” says Tezel. “We also see this time as an incredible opportunity to help people vastly improve their coding skills.  When one is confronted by a tangible challenge, one’s skills and versatility can grow to meet the challenge.”

The App Inventor team plans to continue hosting the challenge for so long as the pandemic is having a worldwide impact. Later this month, the App Inventor team will be hosting a virtual hackathon or worldwide “appathon,” an event that will encourage participants to create apps aimed at improving the global good.

“Our global App Inventor community never ceases to amaze us,” says Tezel. “We are delighted by how inventors of all ages have been rising to the challenge of the coronavirus, empowering themselves by putting their coding skills to good use for the well-being of their communities.”

Read More

Exploring interactions of light and matter

Growing up in a small town in Fujian province in southern China, Juejun Hu was exposed to engineering from an early age. His father, trained as a mechanical engineer, spent his career working first in that field, then in electrical engineering, and then civil engineering.

“He gave me early exposure to the field. He brought me books and told me stories of interesting scientists and scientific activities,” Hu recalls. So when it came time to go to college — in China students have to choose their major before enrolling — he picked materials science, figuring that field straddled his interests in science and engineering. He pursued that major at Tsinghua University in Beijing.

He never regretted that decision. “Indeed, it’s the way to go,” he says. “It was a serendipitous choice.” He continued on to a doctorate in materials science at MIT, and then spent four and a half years as an assistant professor at the University of Delaware before joining the MIT faculty. Last year, Hu earned tenure as an associate professor in MIT’s Department of Materials Science and Engineering.

In his work at the Institute, he has focused on optical and photonic devices, whose applications include improving high-speed communications, observing the behavior of molecules, designing better medical imaging systems, and developing innovations in consumer electronics such as display screens and sensors.

“I got fascinated with light,” he says, recalling how he began working in this field. “It has such a direct impact on our lives.”

Hu is now developing devices to transmit information at very high rates, for data centers or high-performance computers. This includes work on devices called optical diodes or optical isolators, which allow light to pass through only in one direction, and systems for coupling light signals into and out of photonic chips.

Lately, Hu has been focusing on applying machine-learning methods to improve the performance of optical systems. For example, he has developed an algorithm that improves the sensitivity of a spectrometer, a device for analyzing the chemical composition of materials based on how they emit or absorb different frequencies of light. The new approach made it possible to shrink a device that ordinarily requires bulky and expensive equipment down to the scale of a computer chip, by improving its ability to overcome random noise and provide a clean signal.

The miniaturized spectrometer makes it possible to analyze the chemical composition of individual molecules with something “small and rugged, to replace devices that are large, delicate, and expensive,” he says.

Much of his work currently involves the use of metamaterials, which don’t occur in nature and are synthesized usually as a series of ultrathin layers, so thin that they interact with wavelengths of light in novel ways. These could lead to components for biomedical imaging, security surveillance, and sensors on consumer electronics, Hu says. Another project he’s been working on involved developing a kind of optical zoom lens based on metamaterials, which uses no moving parts.

Hu is also pursuing ways to make photonic and photovoltaic systems that are flexible and stretchable rather than rigid, and to make them lighter and more compact. This could  allow for installations in places that would otherwise not be practical. “I’m always looking for new designs to start a new paradigm in optics, [to produce] something that’s smaller, faster, better, and lower cost,” he says.

Hu says the focus of his research these days is mostly on amorphous materials — whose atoms are randomly arranged as opposed to the orderly lattices of crystal structures — because crystalline materials have been so well-studied and understood. When it comes to amorphous materials, though, “our knowledge is amorphous,” he says. “There are lots of new discoveries in the field.”

Hu’s wife, Di Chen, whom he met when they were both in China, works in the financial industry. They have twin daughters, Selena and Eos, who are 1 year old, and a son Helius, age 3. Whatever free time he has, Hu says, he likes to spend doing things with his kids.

Recalling why he was drawn to MIT, he says, “I like this very strong engineering culture.” He especially likes MIT’s strong system of support for bringing new advances out of the lab and into real-world application. “This is what I find really useful.” When new ideas come out of the lab, “I like to see them find real utility,” he adds.

Read More

The MIT Press and UC Berkeley launch Rapid Reviews: COVID-19

The MIT Press has announced the launch of Rapid Reviews: COVID-19 (RR:C19), an open access, rapid-review overlay journal that will accelerate peer review of Covid-19-related research and deliver real-time, verified scientific information that policymakers and health leaders can use.

Scientists and researchers are working overtime to understand the SARS-CoV-2 virus and are producing an unprecedented amount of preprint scholarship that is publicly available online but has not been vetted yet by peer review for accuracy. Traditional peer review can take four or more weeks to complete, but RR:C19’s editorial team, led by Editor-in-Chief Stefano M. Bertozzi, professor of health policy and management and dean emeritus of the School of Public Health at the University of California at Berkeley, will produce expert reviews in a matter of days.

Using artificial intelligence tools, a global team will identify promising scholarship in preprint repositories, commission expert peer reviews, and publish the results on an open access platform in a completely transparent process. The journal will strive for disciplinary and geographic breadth, sourcing manuscripts from all regions and across a wide variety of fields, including medicine; public health; the physical, biological, and chemical sciences; the social sciences; and the humanities. RR:C19 will also provide a new publishing option for revised papers that are positively reviewed.

Amy Brand, director of the MIT Press sees the no-cost open access model as a way to increase the impact of global research and disseminate high-quality scholarship. “Offering a peer-reviewed model on top of preprints will bring a level of diligence that clinicians, researchers, and others worldwide rely on to make sound judgments about the current crisis and its amelioration,” says Brand. “The project also aims to provide a proof-of-concept for new models of peer-review and rapid publishing for broader applications.”

Made possible by a $350,000 grant from the Patrick J. McGovern Foundation and hosted on PubPub, an open-source publishing platform from the Knowledge Futures Group for collaboratively editing and publishing journals, monographs, and other open access scholarly content, RR:C19 will limit the spread of misinformation about Covid-19, according to Bertozzi.

“There is an urgent need to validate — or debunk — the rapidly growing volume of Covid-19-related manuscripts on preprint servers,” explains Bertozzi. “I’m excited to be working with the MIT Press, the Patrick J. McGovern Foundation, and the Knowledge Futures Group to create a novel publishing model that has the potential to more efficiently translate important scientific results into action. We are also working with COVIDScholar, an initiative of UC Berkeley and Lawrence Berkeley National Lab, to create unique AI/machine learning tools to support the review of hundreds of preprints per week.”

“This project signals a breakthrough in academic publishing, bringing together urgency and scientific rigor so the world’s researchers can rapidly disseminate new discoveries that we can trust,” says Vilas Dhar, trustee of the Patrick J. McGovern Foundation. “We are confident the RR:C19 journal will quickly become an invaluable resource for researchers, public health officials, and healthcare providers on the frontline of this pandemic. We’re also excited about the potential for a long-term transformation in how we evaluate and share research across all scientific disciplines.”

On the collaboration around this new journal, Travis Rich, executive director of the Knowledge Futures Group notes, “At a moment when credibility is increasingly crucial to the well-being of society, we’re thrilled to be partnering with this innovative journal to expand the idea of reviews as first-class research objects, both on PubPub and as a model for others.

RR:C19 will publish its first reviews in July 2020 and is actively recruiting potential reviewers and contributors. To learn more about this project and its esteemed editorial board, visit rapidreviewscovid19.mitpress.mit.edu.

Read More

CSAIL robot disinfects Greater Boston Food Bank

With every droplet that we can’t see, touch, or feel dispersed into the air, the threat of spreading Covid-19 persists. It’s become increasingly critical to keep these heavy droplets from lingering — especially on surfaces, which are welcoming and generous hosts. 

Thankfully, our chemical cleaning products are effective, but using them to disinfect larger settings can be expensive, dangerous, and time-consuming. Across the globe there are thousands of warehouses, grocery stores, schools, and other spaces where cleaning workers are at risk.

With that in mind, a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), in collaboration with Ava Robotics and the Greater Boston Food Bank (GBFB), designed a new robotic system that powerfully disinfects surfaces and neutralizes aerosolized forms of the coronavirus.

The approach uses a custom UV-C light fixture designed at CSAIL that is integrated with Ava Robotics’ mobile robot base. The results were encouraging enough that researchers say that the approach could be useful for autonomous UV disinfection in other environments, such as factories, restaurants, and supermarkets. 

UV-C light has proven to be effective at killing viruses and bacteria on surfaces and aerosols, but it’s unsafe for humans to be exposed. Fortunately, Ava’s telepresence robot doesn’t require any human supervision. Instead of the telepresence top, the team subbed in a UV-C array for disinfecting surfaces. Specifically, the array uses short-wavelength ultraviolet light to kill microorganisms and disrupt their DNA in a process called ultraviolet germicidal irradiation.

The complete robot system is capable of mapping the space — in this case, GBFB’s warehouse — and navigating between waypoints and other specified areas. In testing the system, the team used a UV-C dosimeter, which confirmed that the robot was delivering the expected dosage of UV-C light predicted by the model.

“Food banks provide an essential service to our communities, so it is critical to help keep these operations running,” says Alyssa Pierson, CSAIL research scientist and technical lead of the UV-C lamp assembly. “Here, there was a unique opportunity to provide additional disinfecting power to their current workflow, and help reduce the risks of Covid-19 exposure.” 

Food banks are also facing a particular demand due to the stress of Covid-19. The United Nations projected that, because of the virus, the number of people facing severe food insecurity worldwide could double to 265 million. In the United States alone, the five-week total of job losses has risen to 26 million, potentially pushing millions more into food insecurity. 

During tests at GBFB, the robot was able to drive by the pallets and storage aisles at a speed of roughly 0.22 miles per hour. At this speed, the robot could cover a 4,000-square-foot space in GBFB’s warehouse in just half an hour. The UV-C dosage delivered during this time can neutralize approximately 90 percent of coronaviruses on surfaces. For many surfaces, this dose will be higher, resulting in more of the virus neutralized.

Typically, this method of ultraviolet germicidal irradiation is used largely in hospitals and medical settings, to sterilize patient rooms and stop the spread of microorganisms like methicillin-resistant staphylococcus aureus and Clostridium difficile, and the UV-C light also works against airborne pathogens. While it’s most effective in the direct “line of sight,” it can get to nooks and crannies as the light bounces off surfaces and onto other surfaces. 

“Our 10-year-old warehouse is a relatively new food distribution facility with AIB-certified, state-of-the-art cleanliness and food safety standards,” says Catherine D’Amato, president and CEO of the Greater Boston Food Bank. “Covid-19 is a new pathogen that GBFB, and the rest of the world, was not designed to handle. We are pleased to have this opportunity to work with MIT CSAIL and Ava Robotics to innovate and advance our sanitation techniques to defeat this menace.” 

As a first step, the team teleoperated the robot to teach it the path around the warehouse — meaning it’s equipped with autonomy to move around, without the team needing to navigate it remotely. 

It can go to defined waypoints on its map, such as going to the loading dock, then the warehouse shipping floor, then returning to base. They define those waypoints from the expert human user in teleop mode, and then can add new waypoints to the map as needed. 

Within GBFB, the team identified the warehouse shipping floor as a “high-importance area” for the robot to disinfect. Each day, workers stage aisles of products and arrange them for up to 50 pickups by partners and distribution trucks the next day. By focusing on the shipping area, it prioritizes disinfecting items leaving the warehouse to reduce Covid-19 spread out into the community.

Currently, the team is exploring how to use its onboard sensors to adapt to changes in the environment, such that in new territory, the robot would adjust its speed to ensure the recommended dosage is applied to new objects and surfaces. 

A unique challenge is that the shipping area is constantly changing, so each night, the robot encounters a slightly new environment. When the robot is deployed, it doesn’t necessarily know which of the staging aisles will be occupied, or how full each aisle might be. Therefore, the team notes that they need to teach the robot to differentiate between the occupied and unoccupied aisles, so it can change its planned path accordingly.

As far as production went, “in-house manufacturing” took on a whole new meaning for this prototype and the team. The UV-C lamps were assembled in Pierson’s basement, and CSAIL PhD student Jonathan Romanishin crafted a makeshift shop in his apartment for the electronics board assembly. 

“As we drive the robot around the food bank, we are also researching new control policies that will allow the robot to adapt to changes in the environment and ensure all areas receive the proper estimated dosage,” says Pierson. “We are focused on remote operation to minimize  human supervision, and, therefore, the additional risk of spreading Covid-19, while running our system.” 

For immediate next steps, the team is focused on increasing the capabilities of the robot at GBFB, as well as eventually implementing design upgrades. Their broader intention focuses on how to make these systems more capable at adapting to our world: how a robot can dynamically change its plan based on estimated UV-C dosages, how it can work in new environments, and how to coordinate teams of UV-C robots to work together.

“We are excited to see the UV-C disinfecting robot support our community in this time of need,” says CSAIL director and project lead Daniela Rus. “The insights we received from the work at GBFB has highlighted several algorithmic challenges. We plan to tackle these in order to extend the scope of autonomous UV disinfection in complex spaces, including dorms, schools, airplanes, and grocery stores.” 

Currently, the team’s focus is on GBFB, although the algorithms and systems they are developing could be transferred to other use cases in the future, like warehouses, grocery stores, and schools. 

“MIT has been a great partner, and when they came to us, the team was eager to start the integration, which took just four weeks to get up and running,” says Ava Robotics CEO Youssef Saleh. “The opportunity for robots to solve workplace challenges is bigger than ever, and collaborating with MIT to make an impact at the food bank has been a great experience.” 

Pierson and Romanishin worked alongside Hunter Hansen (software capabilities), Bryan Teague of MIT Lincoln Laboratory (who assisted with the UV-C lamp assembly), Igor Gilitschenski and Xiao Li (assisting with future autonomy research), MIT professors Daniela Rus and Saman Amarasinghe, and Ava leads Marcio Macedo and Youssef Saleh. 

This project was supported in part by Ava Robotics, who provided their platform and team support.

Read More

Improving global health equity by helping clinics do more with less

More children are being vaccinated around the world today than ever before, and the prevalence of many vaccine-preventable diseases has dropped over the last decade. Despite these encouraging signs, however, the availability of essential vaccines has stagnated globally in recent years, according the World Health Organization.

One problem, particularly in low-resource settings, is the difficulty of predicting how many children will show up for vaccinations at each health clinic. This leads to vaccine shortages, leaving children without critical immunizations, or to surpluses that can’t be used.

The startup macro-eyes is seeking to solve that problem with a vaccine forecasting tool that leverages a unique combination of real-time data sources, including new insights from front-line health workers. The company says the tool, named the Connected Health AI Network (CHAIN), was able to reduce vaccine wastage by 96 percent across three regions of Tanzania. Now it is working to scale that success across Tanzania and Mozambique.

“Health care is complex, and to be invited to the table, you need to deal with missing data,” says macro-eyes Chief Executive Officer Benjamin Fels, who co-founded the company with Suvrit Sra, the Esther and Harold E. Edgerton Career Development Associate Professor at MIT. “If your system needs age, gender, and weight to make predictions, but for one population you don’t have weight or age, you can’t just say, ‘This system doesn’t work.’ Our feeling is it has to be able to work in any setting.”

The company’s approach to prediction is already the basis for another product, the patient scheduling platform Sibyl, which has analyzed over 6 million hospital appointments and reduced wait times by more than 75 percent at one of the largest heart hospitals in the U.S. Sibyl’s predictions work as part of CHAIN’s broader forecasts.

Both products represent steps toward macro-eyes’ larger goal of transforming health care through artificial intelligence. And by getting their solutions to work in the regions with the least amount of data, they’re also advancing the field of AI.

“The state of the art in machine learning will result from confronting fundamental challenges in the most difficult environments in the world,” Fels says. “Engage where the problems are hardest, and AI too will benefit: [It will become] smarter, faster, cheaper, and more resilient.”

Defining an approach

Sra and Fels first met about 10 years ago when Fels was working as an algorithmic trader for a hedge fund and Sra was a visiting faculty member at the University of California at Berkeley. The pair’s experience crunching numbers in different industries alerted them to a shortcoming in health care.

“A question that became an obsession to me was, ‘Why were financial markets almost entirely determined by machines — by algorithms — and health care the world over is probably the least algorithmic part of anybody’s life?’” Fels recalls. “Why is health care not more data-driven?”

Around 2013, the co-founders began building machine-learning algorithms that measured similarities between patients to better inform treatment plans at Stanford School of Medicine and another large academic medical center in New York. It was during that early work that the founders laid the foundation of the company’s approach.

“There are themes we established at Stanford that remain today,” Fels says. “One is [building systems with] humans in the loop: We’re not just learning from the data, we’re also learning from the experts. The other is multidimensionality. We’re not just looking at one type of data; we’re looking at 10 or 15 types, [including] images, time series, information about medication, dosage, financial information, how much it costs the patient or hospital.”

Around the time the founders began working with Stanford, Sra joined MIT’s Laboratory for Information and Decision Systems (LIDS) as a principal research scientist. He would go on to become a faculty member in the Department of Electrical Engineering and Computer Science and MIT’s Institute for Data, Systems, and Society (IDSS). The mission of IDSS, to advance fields including data science and to use those advances to improve society, aligned well with Sra’s mission at macro-eyes.

“Because of that focus [on impact] within IDSS, I find it my focus to try to do AI for social good,’ Sra says. “The true judgment of success is how many people did we help? How could we improve access to care for people, wherever they may be?”

In 2017, macro-eyes received a small grant from the Bill and Melinda Gates Foundation to explore the possibility of using data from front-line health workers to build a predictive supply chain for vaccines. It was the beginning of a relationship with the Gates Foundation that has steadily expanded as the company has reached new milestones, from building accurate vaccine utilization models in Tanzania and Mozambique to integrating with supply chains to make vaccine supplies more proactive. To help with the latter mission, Prashant Yadav recently joined the board of directors; Yadav worked as a professor of supply chain management with the MIT-Zaragoza International Logistics Program for seven years and is now a senior fellow at the Center for Global Development, a nonprofit thinktank.

In conjunction with their work on CHAIN, the company has deployed another product, Sibyl, which uses machine learning to determine when patients are most likely to show up for appointments, to help front-desk workers at health clinics build schedules. Fels says the system has allowed hospitals to improve the efficiency of their operations so much they’ve reduced the average time patients wait to see a doctor from 55 days to 13 days.

As a part of CHAIN, Sibyl similarly uses a range of data points to optimize schedules, allowing it to accurately predict behavior in environments where other machine learning models might struggle.

The founders are also exploring ways to apply that approach to help direct Covid-19 patients to health clinics with sufficient capacity. That work is being developed with Sierra Leone Chief Innovation Officer David Sengeh SM ’12 PhD ’16.

Pushing frontiers

Building solutions for some of the most underdeveloped health care systems in the world might seem like a difficult way for a young company to establish itself, but the approach is an extension of macro-eyes’ founding mission of building health care solutions that can benefit people around the world equally.

“As an organization, we can never assume data will be waiting for us,” Fels says. “We’ve learned that we need to think strategically and be thoughtful about how to access or generate the data we need to fulfill our mandate: Make the delivery of health care predictive, everywhere.”

The approach is also a good way to explore innovations in mathematical fields the founders have spent their careers working in.

“Necessity is absolutely the mother of invention,” Sra says. “This is innovation driven by need.”

And going forward, the company’s work in difficult environments should only make scaling easier.

We think every day about how to make our technology more rapidly deployable, more generalizable, more highly scalable,” Sra says. “How do we get to the immense power of bringing true machine learning to the world’s most important problems without first spending decades and billions of dollars in building digital infrastructure? How do we leap into the future?”

Read More

Identifying a melody by studying a musician’s body language

We listen to music with our ears, but also our eyes, watching with appreciation as the pianist’s fingers fly over the keys and the violinist’s bow rocks across the ridge of strings. When the ear fails to tell two instruments apart, the eye often pitches in by matching each musician’s movements to the beat of each part. 

A new artificial intelligence tool developed by the MIT-IBM Watson AI Lab leverages the virtual eyes and ears of a computer to separate similar sounds that are tricky even for humans to differentiate. The tool improves on earlier iterations by matching the movements of individual musicians, via their skeletal keypoints, to the tempo of individual parts, allowing listeners to isolate a single flute or violin among multiple flutes or violins. 

Potential applications for the work range from sound mixing, and turning up the volume of an instrument in a recording, to reducing the confusion that leads people to talk over one another on a video-conference calls. The work will be presented at the virtual Computer Vision Pattern Recognition conference this month.

“Body keypoints provide powerful structural information,” says the study’s lead author, Chuang Gan, an IBM researcher at the lab. “We use that here to improve the AI’s ability to listen and separate sound.” 

In this project, and in others like it, the researchers have capitalized on synchronized audio-video tracks to recreate the way that humans learn. An AI system that learns through multiple sense modalities may be able to learn faster, with fewer data, and without humans having to add pesky labels to each real-world representation. “We learn from all of our senses,” says Antonio Torralba, an MIT professor and co-senior author of the study. “Multi-sensory processing is the precursor to embodied intelligence and AI systems that can perform more complicated tasks.”

The current tool, which uses body gestures to separate sounds, builds on earlier work that harnessed motion cues in sequences of images. Its earliest incarnation, PixelPlayer, let you click on an instrument in a concert video to make it louder or softer. An update to PixelPlayer allowed you to distinguish between two violins in a duet by matching each musician’s movements with the tempo of their part. This newest version adds keypoint data, favored by sports analysts to track athlete performance, to extract finer grained motion data to tell nearly identical sounds apart.

The work highlights the importance of visual cues in training computers to have a better ear, and using sound cues to give them sharper eyes. Just as the current study uses musician pose information to isolate similar-sounding instruments, previous work has leveraged sounds to isolate similar-looking animals and objects. 

Torralba and his colleagues have shown that deep learning models trained on paired audio-video data can learn to recognize natural sounds like birds singing or waves crashing. They can also pinpoint the geographic coordinates of a moving car from the sound of its engine and tires rolling toward, or away from, a microphone. 

The latter study suggests that sound-tracking tools might be a useful addition in self-driving cars, complementing their cameras in poor driving conditions. “Sound trackers could be especially helpful at night, or in bad weather, by helping to flag cars that might otherwise be missed,” says Hang Zhao, PhD ’19, who contributed to both the motion and sound-tracking studies.

Other authors of the CVPR music gesture study are Deng Huang and Joshua Tenenbaum at MIT.

Read More

Cynthia Breazeal named Media Lab associate director

Cynthia Breazeal has been promoted to full professor and named associate director of the Media Lab, joining the two other associate directors: Hiroshi Ishii and Andrew Lippman. Both appointments are effective July 1.

In her new associate director role, Breazeal will work with lab faculty and researchers to develop new strategic research initiatives. She will also play a key role in exploring new funding mechanisms to support broad Media Lab needs, including multi-faculty research efforts, collaborations with other labs and departments across the MIT campus, and experimental executive education opportunities. 

“I am excited that Cynthia will be applying her tremendous energy, creativity, and intellect to rally the community in defining new opportunities for funding and research directions,” says Pattie Maes, chair of the lab’s executive committee. “As a first step, she has already organized a series of informal charrettes, where all members of the lab community can participate in brainstorming collaborations that range from tele-creativity, to resilient communities, to sustainability and climate change.” 

Most recently, Breazeal has led an MIT collaboration between the Media Lab, MIT Stephen A. Schwarzman College of Computing, and MIT Open Learning to develop aieducation.mit.edu, an online learning site for grades K-12, which shares a variety of online activities for students to learn about artificial intelligence, with a focus on how to design and use AI responsibly. 

While assuming these new responsibilities, Breazeal will continue to head the lab’s Personal Robots research group, which focuses on developing personal social robots and their potential for meaningful impact on everyday life — from educational aids for children, to pediatric use in hospitals, to at-home assistants for the elderly.

Breazeal is globally recognized as a pioneer in human-robot interaction. Her book, “Designing Sociable Robots” (MIT Press, 2002), is considered pivotal in launching the field. In 2019 she was named an AAAI fellow. Previously, she received numerous awards including the National Academy of Engineering’s Gilbreth Lecture Award and MIT Technology Review‘s TR100/35 Award. Her robot Jibo was on the cover of TIME magazine in its Best Inventions list of 2017, and in 2003 she was a finalist for the National Design Awards in Communications Design. In 2014, Fortune magazine recognized her as one of the Most Promising Women Entrepreneurs. The following year, she was named one of Entrepreneur magazine’s Women to Watch.

Breazeal earned a BS in electrical and computer engineering from the University of California at Santa Barbara, and MS and ScD degrees from MIT in electrical engineering and computer science.

Read More

Bringing the predictive power of artificial intelligence to health care

An important aspect of treating patients with conditions like diabetes and heart disease is helping them stay healthy outside of the hospital — before they to return to the doctor’s office with further complications.

But reaching the most vulnerable patients at the right time often has more to do with probabilities than clinical assessments. Artificial intelligence (AI) has the potential to help clinicians tackle these types of problems, by analyzing large datasets to identify the patients that would benefit most from preventative measures. However, leveraging AI has often required health care organizations to hire their own data scientists or settle for one-size-fits-all solutions that aren’t optimized for their patients.

Now the startup ClosedLoop.ai is helping health care organizations tap into the power of AI with a flexible analytics solution that lets hospitals quickly plug their data into machine learning models and get actionable results.

The platform is being used to help hospitals determine which patients are most likely to miss appointments, acquire infections like sepsis, benefit from periodic check ups, and more. Health insurers, in turn, are using ClosedLoop to make population-level predictions around things like patient readmissions and the onset or progression of chronic diseases.

“We built a health care data science platform that can take in whatever data an organization has, quickly build models that are specific to [their patients], and deploy those models,” says ClosedLoop co-founder and Chief Technology Officer Dave DeCaprio ’94. “Being able to take somebody’s data the way it lives in their system and convert that into a model that can be readily used is still a problem that requires a lot of [health care] domain knowledge, and that’s a lot of what we bring to the table.”

In light of the Covid-19 pandemic, ClosedLoop has also created a model that helps organizations identify the most vulnerable people in their region and prepare for patient surges. The open source tool, called the C-19 Index, has been used to connect high-risk patients with local resources and helped health care systems create risk scores for tens of millions of people overall.

The index is just the latest way that ClosedLoop is accelerating the health care industry’s adoption of AI to improve patient health, a goal DeCaprio has worked toward for the better part of his career.

Designing a strategy

After working as a software engineer for several private companies through the internet boom of the early 2000s, DeCaprio was looking to make a career change when he came across a project focused on genome annotation at the Broad Institute of MIT and Harvard.

The project was DeCaprio’s first professional exposure to the power of artificial intelligence. It blossomed into a six year stint at the Broad, after which he continued exploring the intersection of big data and health care.

“After a year in health care, I realized it was going to be really hard to do anything else,” DeCaprio says. “I’m not going to be able to get excited about selling ads on the internet or anything like that. Once you start dealing with human health, that other stuff just feels insignificant.”

In the course of his work, DeCaprio began noticing problems with the ways machine learning and other statistical techniques were making their way into health care, notably in the fact that predictive models were being applied without regard for hospitals’ patient populations.

“Someone would say, ‘I know how to predict diabetes’ or ‘I know how to predict readmissions,’ and they’d sell a model,” DeCaprio says. “I knew that wasn’t going to work, because the reason readmissions happen in a low-income population of New York City is very different from the reason readmissions happen in a retirement community in Florida. The important thing wasn’t to build one magic model but to build a system that can quickly take somebody’s data and train a model that’s specific for their problems.”

With that approach in mind, DeCaprio joined forces with former co-worker and serial entrepreneur Andrew Eye, and started ClosedLoop in 2017. The startup’s first project involved creating models that predicted patient health outcomes for the Medical Home Network (MHN), a not-for-profit hospital collaboration focused on improving care for Medicaid recipients in Chicago.

As the founders created their modeling platform, they had to address many of the most common obstacles that have slowed health care’s adoption of AI solutions.

Often the first problems startups run into is making their algorithms work with each health care system’s data. Hospitals vary in the type of data they collect on patients and the way they store that information in their system. Hospitals even store the same types of data in vastly different ways.

DeCaprio credits his team’s knowledge of the health care space with helping them craft a solution that allows customers to upload raw data sets into ClosedLoop’s platform and create things like patient risk scores with a few clicks.

Another limitation of AI in health care has been the difficulty of understanding how models get to results. With ClosedLoop’s models, users can see the biggest factors contributing to each prediction, giving them more confidence in each output.

Overall, to become ingrained in customer’s operations, the founders knew their analytics platform needed to give simple, actionable insights. That has translated into a system that generates lists, risk scores, and rankings that care managers can use when deciding which interventions are most urgent for which patients.

“When someone walks into the hospital, it’s already too late [to avoid costly treatments] in many cases,” DeCaprio says. “Most of your best opportunities to lower the cost of care come by keeping them out of the hospital in the first place.”

Customers like health insurers also use ClosedLoop’s platform to predict broader trends in disease risk, emergency room over-utilization, and fraud.

Stepping up for Covid-19

In March, ClosedLoop began exploring ways its platform could help hospitals prepare for and respond to Covid-19. The efforts culminated in a company hackathon over the weekend of March 16. By Monday, ClosedLoop had an open source model on GitHub that assigned Covid-19 risk scores to Medicare patients. By that Friday, it had been used to make predictions on more than 2 million patients.

Today, the model works with all patients, not just those on Medicare, and it has been used to assess the vulnerability of communities around the country. Care organizations have used the model to project patient surges and help individuals at the highest risk understand what they can do to prevent infection.

“Some of it is just reaching out to people who are socially isolated to see if there’s something they can do,” DeCaprio says. “Someone who is 85 years old and shut in may not know there’s a community based organization that will deliver them groceries.”

For DeCaprio, bringing the predictive power of AI to health care has been a rewarding, if humbling, experience.

“The magnitude of the problems are so large that no matter what impact you have, you don’t feel like you’ve moved the needle enough,” he says. “At the same time, every time an organization says, ‘This is the primary tool our care managers have been using to figure out who to reach out to,’ it feels great.”

Read More

MIT and Toyota release innovative dataset to accelerate autonomous driving research

The following was issued as a joint release from the MIT AgeLab and Toyota Collaborative Safety Research Center.

How can we train self-driving vehicles to have a deeper awareness of the world around them? Can computers learn from past experiences to recognize future patterns that can help them safely navigate new and unpredictable situations?

These are some of the questions researchers from the AgeLab at the MIT Center for Transportation and Logistics and the Toyota Collaborative Safety Research Center (CSRC) are trying to answer by sharing an innovative new open dataset called DriveSeg.

Through the release of DriveSeg, MIT and Toyota are working to advance research in autonomous driving systems that, much like human perception, perceive the driving environment as a continuous flow of visual information.

“In sharing this dataset, we hope to encourage researchers, the industry, and other innovators to develop new insight and direction into temporal AI modeling that enables the next generation of assisted driving and automotive safety technologies,” says Bryan Reimer, principal researcher. “Our longstanding working relationship with Toyota CSRC has enabled our research efforts to impact future safety technologies.”

“Predictive power is an important part of human intelligence,” says Rini Sherony, Toyota CSRC’s senior principal engineer. “Whenever we drive, we are always tracking the movements of the environment around us to identify potential risks and make safer decisions. By sharing this dataset, we hope to accelerate research into autonomous driving systems and advanced safety features that are more attuned to the complexity of the environment around them.”

To date, self-driving data made available to the research community have primarily consisted of troves of static, single images that can be used to identify and track common objects found in and around the road, such as bicycles, pedestrians, or traffic lights, through the use of “bounding boxes.” By contrast, DriveSeg contains more precise, pixel-level representations of many of these same common road objects, but through the lens of a continuous video driving scene. This type of full-scene segmentation can be particularly helpful for identifying more amorphous objects — such as road construction and vegetation — that do not always have such defined and uniform shapes.

According to Sherony, video-based driving scene perception provides a flow of data that more closely resembles dynamic, real-world driving situations. It also allows researchers to explore data patterns as they play out over time, which could lead to advances in machine learning, scene understanding, and behavioral prediction.

DriveSeg is available for free and can be used by researchers and the academic community for non-commercial purposes at the links below. The data is comprised of two parts. DriveSeg (manual) is 2 minutes and 47 seconds of high-resolution video captured during a daytime trip around the busy streets of Cambridge, Massachusetts. The video’s 5,000 frames are densely annotated manually with per-pixel human labels of 12 classes of road objects.

DriveSeg (Semi-auto) is 20,100 video frames (67 10-second video clips) drawn from MIT Advanced Vehicle Technologies (AVT) Consortium data. DriveSeg (Semi-auto) is labeled with the same pixel-wise semantic annotation as DriveSeg (manual), except annotations were completed through a novel semiautomatic annotation approach developed by MIT. This approach leverages both manual and computational efforts to coarsely annotate data more efficiently at a lower cost than manual annotation. This dataset was created to assess the feasibility of annotating a wide range of real-world driving scenarios and assess the potential of training vehicle perception systems on pixel labels created through AI-based labeling systems.

To learn more about the technical specifications and permitted use-cases for the data, visit the DriveSeg dataset page.

Read More