Stormy Weather? Scientist Sharpens Forecasts With AI

Stormy Weather? Scientist Sharpens Forecasts With AI

Editor’s note: This is the first in a series of blogs on researchers advancing science in the expanding universe of high performance computing.

A perpetual shower of random raindrops falls inside a three-foot metal ring Dale Durran erected outside his front door (shown above). It’s a symbol of his passion for finding order in the seeming chaos of the planet’s weather.

A part-time sculptor and full-time professor of atmospheric science at the University of Washington, Durran has co-authored dozens of papers describing patterns in Earth’s ever-changing skies. It’s a field for those who crave a confounding challenge trying to express with math the endless dance of air and water.

meteorologist Dale Durran
Dale Durran

In 2019, Durran acquired a new tool, AI. He teamed up with a grad student and a Microsoft researcher to build the first model to demonstrate deep learning’s potential to predict the weather.

Though crude, the model outperformed the complex equations used for the first computer-based forecasts. The descendants of those equations now run on the world’s biggest supercomputers. In contrast, AI slashes the traditional load of required calculations and works faster on much smaller systems.

“It was a dramatic revelation that said we better jump into this with both feet,” Durran recalled.

Sunny Outlook for AI

Last year, the team took their work to the next level. Their latest neural network can process 320 six-week forecasts in less than a minute on the four NVIDIA A100 Tensor Core GPUs in an NVIDIA DGX Station. That’s more than 6x the 51 forecasts today’s supercomputers synthesize to make weather predictions.

In a show of how rapidly the technology is evolving, the model was able to forecast, almost as well as traditional methods, what became the path of Hurricane Irma through the Caribbean in 2017. The same model also could crank out a week’s forecast in a tenth of a second on a single NVIDIA V100 Tensor Core GPU.

AI forecasts Hurricane Irma's path
Durran’s latest work used AI to forecast Hurricane Irma’s path in Florida more efficiently and nearly as accurately as traditional methods.

Durran foresees AI crunching thousands of forecasts simultaneously to deliver a clearer statistical picture with radically fewer resources than conventional equations. Some suggest the performance advances will be measured in as many as five orders of magnitude and use a fraction of the power.

AI Ingests Satellite Data

The next big step could radically widen the lens for weather watchers.

The complex equations today’s predictions use can’t readily handle the growing wealth of satellite data on details like cloud patterns, soil moisture and drought stress in plants. Durran believes AI models can.

One of his graduate students hopes to demonstrate this winter an AI model that directly incorporates satellite data on global cloud cover. If successful, it could point the way for AI to improve forecasts using the deluge of data types now being collected from space.

In a separate effort, researchers at the University of Washington are using deep learning to apply a grid astronomers use to track stars to their work understanding the atmosphere. The novel mesh could help map out a whole new style of weather forecasting, Durran said.

Harvest of a Good Season

In nearly 40 years as an educator, Durran has mentored dozens of students and wrote two highly rated textbooks on fluid dynamics, the math used to understand the weather and climate.

One of his students, Gretchen Mullendore, now heads a lab at the U.S. National Center for Atmospheric Research, working with top researchers to improve weather forecasting models.

“I was lucky to work with Dale in the late 1990s and early 2000s on adapting numerical weather prediction to the latest hardware at the time,” said Mullendore. “I am so thankful to have had an advisor that showed me it’s cool to be excited by science and computers.”

Carrying on a Legacy

Durran is slated to receive in January the American Meteorological Society’s most prestigious honor, the Jule G. Charney Medal. It’s named after the scientist who worked with John von Neumann to develop in the 1950s the algorithms weather forecasters still use today.

Charney was also author in 1979 of one of the earliest scientific papers on global warming. Following in his footsteps, Durran wrote two editorials last year for The Washington Post to help a broad audience understand the impacts of climate change and rising CO2 emissions.

The editorials articulate a passion he discovered at his first job in 1976, creating computer models of air pollution trends. “I decided I’d rather work on the front end of that problem,” he said of his career shift to meteorology.

It’s a field notoriously bedeviled by effects as subtle as a butterfly’s wings that motivates his passion to advance science.

The post Stormy Weather? Scientist Sharpens Forecasts With AI appeared first on NVIDIA Blog.

Read More

Machine learning facilitates “turbulence tracking” in fusion reactors

Machine learning facilitates “turbulence tracking” in fusion reactors

Fusion, which promises practically unlimited, carbon-free energy using the same processes that power the sun, is at the heart of a worldwide research effort that could help mitigate climate change.

A multidisciplinary team of researchers is now bringing tools and insights from machine learning to aid this effort. Scientists from MIT and elsewhere have used computer-vision models to identify and track turbulent structures that appear under the conditions needed to facilitate fusion reactions.

Monitoring the formation and movements of these structures, called filaments or “blobs,” is important for understanding the heat and particle flows exiting from the reacting fuel, which ultimately determines the engineering requirements for the reactor walls to meet those flows. However, scientists typically study blobs using averaging techniques, which trade details of individual structures in favor of aggregate statistics. Individual blob information must be tracked by marking them manually in video data. 

The researchers built a synthetic video dataset of plasma turbulence to make this process more effective and efficient. They used it to train four computer vision models, each of which identifies and tracks blobs. They trained the models to pinpoint blobs in the same ways that humans would.

When the researchers tested the trained models using real video clips, the models could identify blobs with high accuracy — more than 80 percent in some cases. The models were also able to effectively estimate the size of blobs and the speeds at which they moved.

Because millions of video frames are captured during just one fusion experiment, using machine-learning models to track blobs could give scientists much more detailed information.

“Before, we could get a macroscopic picture of what these structures are doing on average. Now, we have a microscope and the computational power to analyze one event at a time. If we take a step back, what this reveals is the power available from these machine-learning techniques, and ways to use these computational resources to make progress,” says Theodore Golfinopoulos, a research scientist at the MIT Plasma Science and Fusion Center and co-author of a paper detailing these approaches.

His fellow co-authors include lead author Woonghee “Harry” Han, a physics PhD candidate; senior author Iddo Drori, a visiting professor in the Computer Science and Artificial Intelligence Laboratory (CSAIL), faculty associate professor at Boston University, and adjunct at Columbia University; as well as others from the MIT Plasma Science and Fusion Center, the MIT Department of Civil and Environmental Engineering, and the Swiss Federal Institute of Technology at Lausanne in Switzerland. The research appears today in Nature Scientific Reports.

Heating things up

For more than 70 years, scientists have sought to use controlled thermonuclear fusion reactions to develop an energy source. To reach the conditions necessary for a fusion reaction, fuel must be heated to temperatures above 100 million degrees Celsius. (The core of the sun is about 15 million degrees Celsius.)

A common method for containing this super-hot fuel, called plasma, is to use a tokamak. These devices utilize extremely powerful magnetic fields to hold the plasma in place and control the interaction between the exhaust heat from the plasma and the reactor walls.

However, blobs appear like filaments falling out of the plasma at the very edge, between the plasma and the reactor walls. These random, turbulent structures affect how energy flows between the plasma and the reactor.

“Knowing what the blobs are doing strongly constrains the engineering performance that your tokamak power plant needs at the edge,” adds Golfinopoulos.

Researchers use a unique imaging technique to capture video of the plasma’s turbulent edge during experiments. An experimental campaign may last months; a typical day will produce about 30 seconds of data, corresponding to roughly 60 million video frames, with thousands of blobs appearing each second. This makes it impossible to track all blobs manually, so researchers rely on average sampling techniques that only provide broad characteristics of blob size, speed, and frequency.

“On the other hand, machine learning provides a solution to this by blob-by-blob tracking for every frame, not just average quantities. This gives us much more knowledge about what is happening at the boundary of the plasma,” Han says.

He and his co-authors took four well-established computer vision models, which are commonly used for applications like autonomous driving, and trained them to tackle this problem.

Simulating blobs

To train these models, they created a vast dataset of synthetic video clips that captured the blobs’ random and unpredictable nature.

“Sometimes they change direction or speed, sometimes multiple blobs merge, or they split apart. These kinds of events were not considered before with traditional approaches, but we could freely simulate those behaviors in the synthetic data,” Han says.

Creating synthetic data also allowed them to label each blob, which made the training process more effective, Drori adds.

Using these synthetic data, they trained the models to draw boundaries around blobs, teaching them to closely mimic what a human scientist would draw.

Then they tested the models using real video data from experiments. First, they measured how closely the boundaries the models drew matched up with actual blob contours.

But they also wanted to see if the models predicted objects that humans would identify. They asked three human experts to pinpoint the centers of blobs in video frames and checked to see if the models predicted blobs in those same locations.

The models were able to draw accurate blob boundaries, overlapping with brightness contours which are considered ground-truth, about 80 percent of the time. Their evaluations were similar to those of human experts, and successfully predicted the theory-defined regime of the blob, which agrees with the results from a traditional method.

Now that they have shown the success of using synthetic data and computer vision models for tracking blobs, the researchers plan to apply these techniques to other problems in fusion research, such as estimating particle transport at the boundary of a plasma, Han says.

They also made the dataset and models publicly available, and look forward to seeing how other research groups apply these tools to study the dynamics of blobs, says Drori.

“Prior to this, there was a barrier to entry that mostly the only people working on this problem were plasma physicists, who had the datasets and were using their methods. There is a huge machine-learning and computer-vision community. One goal of this work is to encourage participation in fusion research from the broader machine-learning community toward the broader goal of helping solve the critical problem of climate change,” he adds.

This research is supported, in part, by the U.S. Department of Energy and the Swiss National Science Foundation.

Read More

Using sound to model the world

Using sound to model the world

Imagine the booming chords from a pipe organ echoing through the cavernous sanctuary of a massive, stone cathedral.

The sound a cathedral-goer will hear is affected by many factors, including the location of the organ, where the listener is standing, whether any columns, pews, or other obstacles stand between them, what the walls are made of, the locations of windows or doorways, etc. Hearing a sound can help someone envision their environment.

Researchers at MIT and the MIT-IBM Watson AI Lab are exploring the use of spatial acoustic information to help machines better envision their environments, too. They developed a machine-learning model that can capture how any sound in a room will propagate through the space, enabling the model to simulate what a listener would hear at different locations.

By accurately modeling the acoustics of a scene, the system can learn the underlying 3D geometry of a room from sound recordings. The researchers can use the acoustic information their system captures to build accurate visual renderings of a room, similarly to how humans use sound when estimating the properties of their physical environment.

In addition to its potential applications in virtual and augmented reality, this technique could help artificial-intelligence agents develop better understandings of the world around them. For instance, by modeling the acoustic properties of the sound in its environment, an underwater exploration robot could sense things that are farther away than it could with vision alone, says Yilun Du, a grad student in the Department of Electrical Engineering and Computer Science (EECS) and co-author of a paper describing the model.

“Most researchers have only focused on modeling vision so far. But as humans, we have multimodal perception. Not only is vision important, sound is also important. I think this work opens up an exciting research direction on better utilizing sound to model the world,” Du says.

Joining Du on the paper are lead author Andrew Luo, a grad student at Carnegie Mellon University (CMU); Michael J. Tarr, the Kavčić-Moura Professor of Cognitive and Brain Science at CMU; and senior authors Joshua B. Tenenbaum, the Paul E. Newton Career Development Professor of Cognitive Science and Computation in MIT’s Department of Brain and Cognitive Sciences and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL); Antonio Torralba, the Delta Electronics Professor of Electrical Engineering and Computer Science and a member of CSAIL; and Chuang Gan, a principal research staff member at the MIT-IBM Watson AI Lab. The research will be presented at the Conference on Neural Information Processing Systems.

Sound and vision

In computer vision research, a type of machine-learning model called an implicit neural representation model has been used to generate smooth, continuous reconstructions of 3D scenes from images. These models utilize neural networks, which contain layers of interconnected nodes, or neurons, that process data to complete a task.

The MIT researchers employed the same type of model to capture how sound travels continuously through a scene.

But they found that vision models benefit from a property known as photometric consistency which does not apply to sound. If one looks at the same object from two different locations, the object looks roughly the same. But with sound, change locations and the sound one hears could be completely different due to obstacles, distance, etc. This makes predicting audio very difficult.

The researchers overcame this problem by incorporating two properties of acoustics into their model: the reciprocal nature of sound and the influence of local geometric features.

Sound is reciprocal, which means that if the source of a sound and a listener swap positions, what the person hears is unchanged. Additionally, what one hears in a particular area is heavily influenced by local features, such as an obstacle between the listener and the source of the sound.

To incorporate these two factors into their model, called a neural acoustic field (NAF), they augment the neural network with a grid that captures objects and architectural features in the scene, like doorways or walls. The model randomly samples points on that grid to learn the features at specific locations.

“If you imagine standing near a doorway, what most strongly affects what you hear is the presence of that doorway, not necessarily geometric features far away from you on the other side of the room. We found this information enables better generalization than a simple fully connected network,” Luo says.

From predicting sounds to visualizing scenes

Researchers can feed the NAF visual information about a scene and a few spectrograms that show what a piece of audio would sound like when the emitter and listener are located at target locations around the room. Then the model predicts what that audio would sound like if the listener moves to any point in the scene.

The NAF outputs an impulse response, which captures how a sound should change as it propagates through the scene. The researchers then apply this impulse response to different sounds to hear how those sounds should change as a person walks through a room.

For instance, if a song is playing from a speaker in the center of a room, their model would show how that sound gets louder as a person approaches the speaker and then becomes muffled as they walk out into an adjacent hallway.

When the researchers compared their technique to other methods that model acoustic information, it generated more accurate sound models in every case. And because it learned local geometric information, their model was able to generalize to new locations in a scene much better than other methods.

Moreover, they found that applying the acoustic information their model learns to a computer vison model can lead to a better visual reconstruction of the scene.

“When you only have a sparse set of views, using these acoustic features enables you to capture boundaries more sharply, for instance. And maybe this is because to accurately render the acoustics of a scene, you have to capture the underlying 3D geometry of that scene,” Du says.

The researchers plan to continue enhancing the model so it can generalize to brand new scenes. They also want to apply this technique to more complex impulse responses and larger scenes, such as entire buildings or even a town or city.

“This new technique might open up new opportunities to create a multimodal immersive experience in the metaverse application,” adds Gan.

“My group has done a lot of work on using machine-learning methods to accelerate acoustic simulation or model the acoustics of real-world scenes. This paper by Chuang Gan and his co-authors is clearly a major step forward in this direction,” says Dinesh Manocha, the Paul Chrisman Iribe Professor of Computer Science and Electrical and Computer Engineering at the University of Maryland, who was not involved with this work. “In particular, this paper introduces a nice implicit representation that can capture how sound can propagate in real-world scenes by modeling it using a linear time-invariant system. This work can have many applications in AR/VR as well as real-world scene understanding.”

This work is supported, in part, by the MIT-IBM Watson AI Lab and the Tianqiao and Chrissy Chen Institute.

Read More