Use generative AI foundation models in VPC mode with no internet connectivity using Amazon SageMaker JumpStart

Use generative AI foundation models in VPC mode with no internet connectivity using Amazon SageMaker JumpStart

With recent advancements in generative AI, there are lot of discussions happening on how to use generative AI across different industries to solve specific business problems. Generative AI is a type of AI that can create new content and ideas, including conversations, stories, images, videos, and music. It is all backed by very large models that are pre-trained on vast amounts of data and commonly referred to as foundation models (FMs). These FMs can perform a wide range of tasks that span multiple domains, like writing blog posts, generating images, solving math problems, engaging in dialog, and answering questions based on a document. The size and general-purpose nature of FMs make them different from traditional ML models, which typically perform specific tasks, like analyzing text for sentiment, classifying images, and forecasting trends.

While organizations are looking to use the power of these FMs, they also want the FM-based solutions to be running in their own protected environments. Organizations operating in heavily regulated spaces like global financial services and healthcare and life sciences have auditory and compliance requirements to run their environment in their VPCs. In fact, a lot of times, even direct internet access is disabled in these environments to avoid exposure to any unintended traffic, both ingress and egress.

Amazon SageMaker JumpStart is an ML hub offering algorithms, models, and ML solutions. With SageMaker JumpStart, ML practitioners can choose from a growing list of best performing open source FMs. It also provides the ability to deploy these models in your own Virtual Private Cloud (VPC).

In this post, we demonstrate how to use JumpStart to deploy a Flan-T5 XXL model in a VPC with no internet connectivity. We discuss the following topics:

  • How to deploy a foundation model using SageMaker JumpStart in a VPC with no internet access
  • Advantages of deploying FMs via SageMaker JumpStart models in VPC mode
  • Alternate ways to customize deployment of foundation models via JumpStart

Apart from FLAN-T5 XXL, JumpStart provides lot of different foundation models for various tasks. For the complete list, check out Getting started with Amazon SageMaker JumpStart.

Solution overview

As part of the solution, we cover the following steps:

  1. Set up a VPC with no internet connection.
  2. Set up Amazon SageMaker Studio using the VPC we created.
  3. Deploy the generative AI Flan T5-XXL foundation model using JumpStart in the VPC with no internet access.

The following is an architecture diagram of the solution.

sol-arch

Let’s walk through the different steps to implement this solution.

Prerequisites

To follow along with this post, you need the following:

Set up a VPC with no internet connection

Create a new CloudFormation stack by using the 01_networking.yaml template. This template creates a new VPC and adds two private subnets across two Availability Zones with no internet connectivity. It then deploys gateway VPC endpoints for accessing Amazon Simple Storage Service (Amazon S3) and interface VPC endpoints for SageMaker and a few other services to allow the resources in the VPC to connect to AWS services via AWS PrivateLink.

Provide a stack name, such as No-Internet, and complete the stack creation process.

vpc-stack-input

This solution is not highly available because the CloudFormation template creates interface VPC endpoints only in one subnet to reduce costs when following the steps in this post.

Set up Studio using the VPC

Create another CloudFormation stack using 02_sagemaker_studio.yaml, which creates a Studio domain, Studio user profile, and supporting resources like IAM roles. Choose a name for the stack; for this post, we use the name SageMaker-Studio-VPC-No-Internet. Provide the name of the VPC stack you created earlier (No-Internet) as the CoreNetworkingStackName parameter and leave everything else as default.

studio-cfn-stack-input

Wait until AWS CloudFormation reports that the stack creation is complete. You can confirm the Studio domain is available to use on the SageMaker console.

domain-home

To verify the Studio domain user has no internet access, launch Studio using the SageMaker console. Choose File, New, and Terminal, then attempt to access an internet resource. As shown in the following screenshot, the terminal will keep waiting for the resource and eventually time out.

studio-terminal

This proves that Studio is operating in a VPC that doesn’t have internet access.

Deploy the generative AI foundation model Flan T5-XXL using JumpStart

We can deploy this model via Studio as well as via API. JumpStart provides all the code to deploy the model via a SageMaker notebook accessible from within Studio. For this post, we showcase this capability from the Studio.

  • On the Studio welcome page, choose JumpStart under Prebuilt and automated solutions.

studio-welcome-page

  • Choose the Flan-T5 XXL model under Foundation Models.

js-model-hub

  • By default, it opens the Deploy tab. Expand the Deployment Configuration section to change the hosting instance and endpoint name, or add any additional tags. There is also an option to change the S3 bucket location where the model artifact will be stored for creating the endpoint. For this post, we leave everything at its default values. Make a note of the endpoint name to use while invoking the endpoint for making predictions.

deploy-js

  • Expand the Security Settings section, where you can specify the IAM role for creating the endpoint. You can also specify the VPC configurations by providing the subnets and security groups. The subnet IDs and security group IDs can be found from the VPC stack’s Outputs tab on the AWS CloudFormation console. SageMaker JumpStart requires at least two subnets as part of this configuration. The subnets and security groups control access to and from the model container.

js-deploy-security-settings

NOTE: Irrespective of whether the SageMaker JumpStart model is deployed in the VPC or not, the model always runs in network isolation mode, which isolates the model container so no inbound or outbound network calls can be made to or from the model container. Because we’re using a VPC, SageMaker downloads the model artifact through our specified VPC. Running the model container in network isolation doesn’t prevent your SageMaker endpoint from responding to inference requests. A server process runs alongside the model container and forwards it the inference requests, but the model container doesn’t have network access.

  • Choose Deploy to deploy the model. We can see the near-real-time status of the endpoint creation in progress. The endpoint creation may take 5–10 minutes to complete.

js-deploy-progress

Observe the value of the field Model data location on this page. All the SageMaker JumpStart models are hosted on a SageMaker managed S3 bucket (s3://jumpstart-cache-prod-{region}). Therefore, irrespective of which model is picked from JumpStart, the model gets deployed from the publicly accessible SageMaker JumpStart S3 bucket and the traffic never goes to the public model zoo APIs to download the model. This is why the model endpoint creation started successfully even when we’re creating the endpoint in a VPC that doesn’t have direct internet access.

The model artifact can also be copied to any private model zoo or your own S3 bucket to control and secure model source location further. You can use the following command to download the model locally using the AWS Command Line Interface (AWS CLI):

aws s3 cp s3://jumpstart-cache-prod-eu-west-1/huggingface-infer/prepack/v1.0.2/infer-prepack-huggingface-text2text-flan-t5-xxl.tar.gz .
  • After a few minutes, the endpoint gets created successfully and shows the status as In Service. Choose Open Notebook in the Use Endpoint from Studio section. This is a sample notebook provided as part of the JumpStart experience to quickly test the endpoint.

jumpstart-deploy-complete

  • In the notebook, choose the image as Data Science 3.0 and the kernel as Python 3. When the kernel is ready, you can run the notebook cells to make predictions on the endpoint. Note that the notebook uses the invoke_endpoint() API from the AWS SDK for Python to make predictions. Alternatively, you can use the SageMaker Python SDK’s predict() method to achieve the same result.

run-deploy-notebook-jumpstart

This concludes the steps to deploy the Flan-T5 XXL model using JumpStart within a VPC with no internet access.

Advantages of deploying SageMaker JumpStart models in VPC mode

The following are some of the advantages of deploying SageMaker JumpStart models in VPC mode:

  • Because SageMaker JumpStart doesn’t download the models from a public model zoo, it can be used in fully locked-down environments as well where there is no internet access
  • Because the network access can be limited and scoped down for SageMaker JumpStart models, this helps teams improve the security posture of the environment
  • Due to the VPC boundaries, access to the endpoint can also be limited via subnets and security groups, which adds an extra layer of security

Alternate ways to customize deployment of foundation models via SageMaker JumpStart

In this section, we share some alternate ways to deploy the model.

Use SageMaker JumpStart APIs from your preferred IDE

Models provided by SageMaker JumpStart don’t require you to access Studio. You can deploy them to SageMaker endpoints from any IDE, thanks to the JumpStart APIs. You could skip the Studio setup step discussed earlier in this post and use the JumpStart APIs to deploy the model. These APIs provide arguments where VPC configurations can be supplied as well. The APIs are part of the SageMaker Python SDK itself. For more information, refer to Pre-trained models.

Use notebooks provided by SageMaker JumpStart from SageMaker Studio

SageMaker JumpStart also provides notebooks to deploy the model directly. On the model detail page, choose Open notebook to open a sample notebook containing the code to deploy the endpoint. The notebook uses SageMaker JumpStart Industry APIs that allow you to list and filter the models, retrieve the artifacts, and deploy and query the endpoints. You can also edit the notebook code per your use case-specific requirements.

open-jumpstart-notebook

Clean up resources

Check out the CLEANUP.md file to find detailed steps to delete the Studio, VPC, and other resources created as part of this post.

Troubleshooting

If you encounter any issues in creating the CloudFormation stacks, refer to Troubleshooting CloudFormation.

Conclusion

Generative AI powered by large language models is changing how people acquire and apply insights from information. However, organizations operating in heavily regulated spaces are required to use the generative AI capabilities in a way that allows them to innovate faster but also simplifies the access patterns to such capabilities.

We encourage you to try out the approach provided in this post to embed generative AI capabilities in your existing environment while still keeping it inside your own VPC with no internet access. For further reading on SageMaker JumpStart foundation models, check out the following:


About the authors

Vikesh Pandey is a Machine Learning Specialist Solutions Architect at AWS, helping customers from financial industries design and build solutions on generative AI and ML. Outside of work, Vikesh enjoys trying out different cuisines and playing outdoor sports.

Mehran Nikoo is a Senior Solutions Architect at AWS, working with Digital Native businesses in the UK and helping them achieve their goals. Passionate about applying his software engineering experience to machine learning, he specializes in end-to-end machine learning and MLOps practices.

Read More

How Patsnap used GPT-2 inference on Amazon SageMaker with low latency and cost

How Patsnap used GPT-2 inference on Amazon SageMaker with low latency and cost

This blog post was co-authored, and includes an introduction, by Zilong Bai, senior natural language processing engineer at Patsnap.

You’re likely familiar with the autocomplete suggestion feature when you search for something on Google or Amazon. Although the search terms in these scenarios are pretty common keywords or expressions that we use in daily life, in some cases search terms are very specific to the scenario. Patent search is one of them. Recently, the AWS Generative AI Innovation Center collaborated with Patsnap to implement a feature to automatically suggest search keywords as an innovation exploration to improve user experiences on their platform.

Patsnap provides a global one-stop platform for patent search, analysis, and management. They use big data (such as a history of past search queries) to provide many powerful yet easy-to-use patent tools. These tools have enabled Patsnap’s global customers to have a better understanding of patents, track recent technological advances, identify innovation trends, and analyze competitors in real time.

At the same time, Patsnap is embracing the power of machine learning (ML) to develop features that can continuously improve user experiences on the platform. A recent initiative is to simplify the difficulty of constructing search expressions by autofilling patent search queries using state-of-the-art text generation models. Patsnap had trained a customized GPT-2 model for such a purpose. Because there is no such existing feature in a patent search engine (to their best knowledge), Patsnap believes adding this feature will increase end-user stickiness.

However, in their recent experiments, the inference latency and queries per second (QPS) of a PyTorch-based GPT-2 model couldn’t meet certain thresholds that can justify its business value. To tackle this challenge, AWS Generative AI Innovation Center scientists explored a variety of solutions to optimize GPT-2 inference performance, resulting in lowering the model latency by 50% on average and improving the QPS by 200%.

Large language model inference challenges and optimization approaches

In general, applying such a large model in a real-world production environment is non-trivial. The prohibitive computation cost and latency of PyTorch-based GPT-2 made it difficult to be widely adopted from a business operation perspective. In this project, our objective is to significantly improve the latency with reasonable computation costs. Specifically, Patsnap requires the following:

  • The average latency of model inference for generating search expressions needs to be controlled within 600 milliseconds in real-time search scenarios
  • The model requires high throughput and QPS to do a large number of searches per second during peak business hours

In this post, we discuss our findings using Amazon Elastic Compute Cloud (Amazon EC2) instances, featuring GPU-based instances using NVIDIA TensorRT.

In a short summary, we use NVIDIA TensorRT to optimize the latency of GPT-2 and deploy it to an Amazon SageMaker endpoint for model serving, which reduces the average latency from 1,172 milliseconds to 531 milliseconds

In the following sections, we go over the technical details of the proposed solutions with key code snippets and show comparisons with the customer’s status quo based on key metrics.

GPT-2 model overview

Open AI’s GPT-2 is a large transformer-based language model with 1.5 billion parameters, trained on the WebText dataset, containing 8 million web pages. The GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks across diverse domains. GPT-2 displays a broad set of capabilities, including the ability to generate conditional synthetic text samples of unprecedented quality, where we prime the model with an input and let it generate a lengthy continuation. In this situation, we exploit it to generate search queries. As GPT models keep growing larger, inference costs are continuously rising, which increases the need to deploy these models with acceptable cost.

Achieve low latency on GPU instances via TensorRT

TensorRT is a C++ library for high-performance inference on NVIDIA GPUs and deep learning accelerators, supporting major deep learning frameworks such as PyTorch and TensorFlow. Previous studies have shown great performance improvement in terms of model latency. Therefore, it’s an ideal choice for us to reduce the latency of the target model on NVIDIA GPUs.

We are able to achieve a significant reduction in GPT-2 model inference latency with a TensorRT-based model on NVIDIA GPUs. The TensorRT-based model is deployed via SageMaker for performance tests. In this post, we show the steps to convert the original PyTorch-based GPT-2 model to a TensorRT-based model.

Converting the PyTorch-based GPT-2 to the TensorRT-based model is not difficult via the official tool provided by NVIDIA. In addition, with such straightforward conversions, no obvious model accuracy degradation has been observed. In general, there are three steps to follow:

  1. Analyze your GPT-2. As of this writing, NVIDIA’s conversion tool only supports Hugging Face’s version of GPT-2 model. If the current GPT-2 model isn’t the original version, you need to modify it accordingly. It’s recommended to strip out custom code from the original GPT-2 implementation of Hugging Face, which is very helpful for the conversion.
  2. Install the required Python packages. The conversion process first converts the PyTorch-based model to the ONNX model and then converts the ONNX-based model to the TensorRT-based model. The following Python packages are needed for this two-step conversion:
tabulate
toml
torch
sentencepiece==0.1.95
onnx==1.9.0
onnx_graphsurgeon
polygraphy
transformers
  1. Convert your model. The following code contains the functions for the two-step conversion:
def torch2onnx():
    metadata = NetworkMetadata(variant=GPT2_VARIANT, precision=Precision(fp16=True), other=GPT2Metadata(kv_cache=False))
    gpt2 = GPT2TorchFile(model.to('cpu'), metadata)
    onnx_path = ('Your own path to save ONNX-based model') # e.g, ./model_fp16.onnx
    gpt2.as_onnx_model(onnx_path, force_overwrite=False)
    return onnx_path, metadata
   
def onnx2trt(onnx_path, metadata):
    trt_path = 'Your own path to save TensorRT-based model' # e.g., ./model_fp16.onnx.engine
    batch_size = 10
    max_sequence_length = 42
    profiles = [Profile().add(
        "input_ids",
        min=(1, 1),
        opt=(batch_size, max_sequence_length // 2),
        max=(batch_size, max_sequence_length),
    )]
    gpt2_engine = GPT2ONNXFile(onnx_path, metadata).as_trt_engine(output_fpath=trt_path, profiles=profiles)
    gpt2_trt = GPT2TRTDecoder(gpt2_engine, metadata, config, max_sequence_length=42, batch_size=10)

Latency comparison: PyTorch vs. TensorRT

JMeter is used for performance benchmarking in this project. JMeter is an Apache project that can be used as a load testing tool for analyzing and measuring the performance of a variety of services. We record the QPS and latency of the original PyTorch-based model and our converted TensorRT-based GPT-2 model on an AWS P3.2xlarge instance. As we show later in this post, due to the powerful acceleration ability of TensorRT, the latency of GPT-2 is significantly reduced. When the request concurrency is 1, the average latency has been reduced by 274 milliseconds (2.9 times faster). From the perspective of QPS, it is increased to 7 from 2.4, which is around a 2.9 times boost compared to the original PyTorch-based model. Moreover, as the concurrency increases, QPS keeps increasing. This suggests lower costs with acceptable latency increase (but still much faster than the original model).

The following table compares latency:

. Concurrency QPS Maximum Latency Minumum Latency Average Latency
Customer PyTorch version (on p3.2xlarge) 1 2.4 632 105 417
2 3.1 919 168 636
3 3.4 1911 222 890
4 3.4 2458 277 1172
AWS TensorRT version (on p3.2xlarge) 1 7 (+4.6) 275 22 143 (-274 ms)
2 7.2 (+4.1) 274 51 361 (-275 ms)
3 7.3 (+3.9) 548 49 404 (-486 ms)
4 7.5 (+4.1) 765 62 531 (-641 ms)

Deploy TensorRT-based GPT-2 with SageMaker and a custom container

TensorRT-based GPT-2 requires a relatively recent TensorRT version, so we choose the bring your own container (BYOC) mode of SageMaker to deploy our model. BYOC mode provides a flexible way to deploy the model, and you can build customized environments in your own Docker container. In this section, we show how to build your own container, deploy your own GPT-2 model, and test with the SageMaker endpoint API.

Build your own container

The container’s file directory is presented in the following code. Specifically, Dockerfile and build.sh are used to build the Docker container. gpt2 and predictor.py implement the model and the inference API. serve, nginx.conf, and wsgi.py provide the configuration for the NGINX web server.

container
├── Dockerfile    # build our docker based on this file.
├── build.sh      # create our own image and push it to Amazon ECR
├── gpt2          # model directory
├── predictor.py  # backend function for invoke the model
├── serve         # web server setting file
├── nginx.conf    # web server setting file
└── wsgi.py       # web server setting file

You can run sh ./build.sh to build the container.

Deploy to a SageMaker endpoint

After you have built a container to run the TensorRT-based GPT-2, you can enable real-time inference via a SageMaker endpoint. Use the following code snippets to create the endpoint and deploy the model to the endpoint using the corresponding SageMaker APIs:

import boto3from time import gmtime, strftime
from sagemaker import get_execution_role

sm_client = boto3.client(service_name='sagemaker')
runtime_sm_client = boto3.client(service_name='sagemaker-runtime')
account_id = boto3.client('sts').get_caller_identity()['Account']
region = boto3.Session().region_name
s3_bucket = '${Your s3 bucket}'
role = get_execution_role()
model_name = '${Your Model Name}'
# you need to upload your container to S3 first
container = '${Your Image Path}'
instance_type = 'ml.p3.2xlarge'
container = {
    'Image': container
}
create_model_response = sm_client.create_model(
    ModelName = model_name,
    ExecutionRoleArn = role,
    Containers = [container])
    
# Endpoint Setting
endpoint_config_name = '${Your Endpoint Config Name}'
print('Endpoint config name: ' + endpoint_config_name)
create_endpoint_config_response = sm_client.create_endpoint_config(
    EndpointConfigName = endpoint_config_name,
    ProductionVariants=[{
        'InstanceType': instance_type,
        'InitialInstanceCount': 1,
        'InitialVariantWeight': 1,
        'ModelName': model_name,
        'VariantName': 'AllTraffic'}])
print("Endpoint config Arn: " + create_endpoint_config_response['EndpointConfigArn'])

# Deploy Model
endpoint_name = '${Your Endpoint Name}'
print('Endpoint name: ' + endpoint_name)
create_endpoint_response = sm_client.create_endpoint(
    EndpointName=endpoint_name,
    EndpointConfigName=endpoint_config_name)
print('Endpoint Arn: ' + create_endpoint_response['EndpointArn'])
resp = sm_client.describe_endpoint(EndpointName=endpoint_name)
status = resp['EndpointStatus']
print("Endpoint Status: " + status)
print('Waiting for {} endpoint to be in service...'.format(endpoint_name))
waiter = sm_client.get_waiter('endpoint_in_service')
waiter.wait(EndpointName=endpoint_name)

Test the deployed model

After the model is successfully deployed, you can test the endpoint via the SageMaker notebook instance with the following code:

import json
import boto3

sagemaker_runtime = boto3.client("sagemaker-runtime", region_name='us-east-2')
endpoint_name = "${Your Endpoint Name}"
request_body = {"input": "amazon"}
payload = json.dumps(request_body)
content_type = "application/json"
response = sagemaker_runtime.invoke_endpoint(
                            EndpointName=endpoint_name,
                            ContentType=content_type,
                            Body=payload # Replace with your own data.
                            )
result = json.loads(response['Body'].read().decode())
print(result)

Conclusion

In this post, we described how to enable low-latency GPT-2 inference on SageMaker to create business value. Specifically, with the support of NVIDIA TensorRT, we can achieve 2.9 times acceleration on the NVIDIA GPU instances with SageMaker for a customized GPT-2 model.

If you want help with accelerating the use of GenAI models in your products and services, please contact the AWS Generative AI Innovation Center. The AWS Generative AI Innovation Center can help you make your ideas a reality faster and more effectively. To get started with the Generative AI Innovation Center, visit here.


About the Authors


Hao Huang
is an applied scientist at the AWS Generative AI Innovation Center. He specializes in Computer Vision (CV) and Visual-Language Model (VLM). Recently, he has developed a strong interest in generative AI technologies and has already collaborated with customers to apply these cutting-edge technologies to their business. He is also a reviewer for AI conferences such as ICCV and AAAI.

Zilong Bai is a senior natural language processing engineer at Patsnap. He is passionate about research and proof-of-concept work on cutting-edge techniques for generative language models.

Yuanjun Xiao is a Solution Architect at AWS. He is responsible for AWS architecture consulting and design. He is also passionate about building AI and analytic solutions.

Xuefei Zhang is an applied scientist at the AWS Generative AI Innovation Center, works in NLP and AGI areas to solve industry problems with customers.

Guang Yang is a senior applied scientist at the AWS Generative AI Innovation Center where he works with customers across various verticals and applies creative problem solving to generate value for customers with state-of-the-art ML/AI solutions.

Read More

Optimize AWS Inferentia utilization with FastAPI and PyTorch models on Amazon EC2 Inf1 & Inf2 instances

Optimize AWS Inferentia utilization with FastAPI and PyTorch models on Amazon EC2 Inf1 & Inf2 instances

When deploying Deep Learning models at scale, it is crucial to effectively utilize the underlying hardware to maximize performance and cost benefits. For production workloads requiring high throughput and low latency, the selection of the Amazon Elastic Compute Cloud (EC2) instance, model serving stack, and deployment architecture is very important. Inefficient architecture can lead to suboptimal utilization of the accelerators and unnecessarily high production cost.

In this post we walk you through the process of deploying FastAPI model servers on AWS Inferentia devices (found on Amazon EC2 Inf1 and Amazon EC Inf2 instances). We also demonstrate hosting a sample model that is deployed in parallel across all NeuronCores for maximum hardware utilization.

Solution overview

FastAPI is an open-source web framework for serving Python applications that is much faster than traditional frameworks like Flask and Django. It utilizes an Asynchronous Server Gateway Interface (ASGI) instead of the widely used Web Server Gateway Interface (WSGI). ASGI processes incoming requests asynchronously as opposed to WSGI which processes requests sequentially. This makes FastAPI the ideal choice to handle latency sensitive requests. You can use FastAPI to deploy a server that hosts an endpoint on an Inferentia (Inf1/Inf2) instances that listens to client requests through a designated port.

Our objective is to achieve highest performance at lowest cost through maximum utilization of the hardware. This allows us to handle more inference requests with fewer accelerators. Each AWS Inferentia1 device contains four NeuronCores-v1 and each AWS Inferentia2 device contains two NeuronCores-v2. The AWS Neuron SDK allows us to utilize each of the NeuronCores in parallel, which gives us more control in loading and inferring four or more models in parallel without sacrificing throughput.

With FastAPI, you have your choice of Python web server (Gunicorn, Uvicorn, Hypercorn, Daphne). These web servers provide and abstraction layer on top of the underlying Machine Learning (ML) model. The requesting client has the benefit of being oblivious to the hosted model. A client doesn’t need to know the model’s name or version that has been deployed under the server; the endpoint name is now just a proxy to a function that loads and runs the model. In contrast, in a framework-specific serving tool, such as TensorFlow Serving, the model’s name and version are part of the endpoint name. If the model changes on the server side, the client has to know and change its API call to the new endpoint accordingly. Therefore, if you are continuously evolving the version models, such as in the case of A/B testing, then using a generic Python web server with FastAPI is a convenient way of serving models, because the endpoint name is static.

An ASGI server’s role is to spawn a specified number of workers that listen for client requests and run the inference code. An important capability of the server is to make sure the requested number of workers are available and active. In case a worker is killed, the server must launch a new worker. In this context, the server and workers may be identified by their Unix process ID (PID). For this post, we use a Hypercorn server, which is a popular choice for Python web servers.

In this post, we share best practices to deploy deep learning models with FastAPI on AWS Inferentia NeuronCores. We show that you can deploy multiple models on separate NeuronCores that can be called concurrently. This setup increases throughput because multiple models can be inferred concurrently and NeuronCore utilization is fully optimized. The code can be found on the GitHub repo. The following figure shows the architecture of how to set up the solution on an EC2 Inf2 instance.

The same architecture applies to an EC2 Inf1 instance type except it has four cores. So that changes the architecture diagram a little bit.

AWS Inferentia NeuronCores

Let’s dig a little deeper into tools provided by AWS Neuron to engage with the NeuronCores. The following tables shows the number of NeuronCores in each Inf1 and Inf2 instance type. The host vCPUs and the system memory are shared across all available NeuronCores.

Instance Size # Inferentia Accelerators # NeuronCores-v1 vCPUs Memory (GiB)
Inf1.xlarge 1 4 4 8
Inf1.2xlarge 1 4 8 16
Inf1.6xlarge 4 16 24 48
Inf1.24xlarge 16 64 96 192
Instance Size # Inferentia Accelerators # NeuronCores-v2 vCPUs Memory (GiB)
Inf2.xlarge 1 2 4 32
Inf2.8xlarge 1 2 32 32
Inf2.24xlarge 6 12 96 192
Inf2.48xlarge 12 24 192 384

Inf2 instances contain the new NeuronCores-v2 in comparison to the NeuronCore-v1 in the Inf1 instances. Despite fewer cores, they are able to offer 4x higher throughput and 10x lower latency than Inf1 instances. Inf2 instances are ideal for Deep Learning workloads like Generative AI, Large Language Models (LLM) in OPT/GPT family and vision transformers like Stable Diffusion.

The Neuron Runtime is responsible for running models on Neuron devices. Neuron Runtime determines which NeuronCore will run which model and how to run it. Configuration of Neuron Runtime is controlled through the use of environment variables at the process level. By default, Neuron framework extensions will take care of Neuron Runtime configuration on the user’s behalf; however, explicit configurations are also possible to achieve more optimized behavior.

Two popular environment variables are NEURON_RT_NUM_CORES and NEURON_RT_VISIBLE_CORES. With these environment variables, Python processes can be tied to a NeuronCore. With NEURON_RT_NUM_CORES, a specified number of cores can be reserved for a process, and with NEURON_RT_VISIBLE_CORES, a range of NeuronCores can be reserved. For example, NEURON_RT_NUM_CORES=2 myapp.py will reserve two cores and NEURON_RT_VISIBLE_CORES=’0-2’ myapp.py will reserve zero, one, and two cores for myapp.py. You can reserve NeuronCores across devices (AWS Inferentia chips) as well. So, NEURON_RT_VISIBLE_CORES=’0-5’ myapp.py will reserve the first four cores on device1 and one core on device2 in an Ec2 Inf1 instance type. Similarly, on an EC2 Inf2 instance type, this configuration will reserve two cores across device1 and device2 and one core on device3. The following table summarizes the configuration of these variables.

Name Description Type Expected Values Default Value RT Version
NEURON_RT_VISIBLE_CORES Range of specific NeuronCores needed by the process Integer range (like 1-3) Any value or range between 0 to Max NeuronCore in the system None 2.0+
NEURON_RT_NUM_CORES Number of NeuronCores required by the process Integer A value from 1 to Max NeuronCore in the system 0, which is interpreted as “all” 2.0+

For a list of all environment variables, refer to Neuron Runtime Configuration.

By default, when loading models, models get loaded onto NeuronCore 0 and then NeuronCore 1 unless explicitly stated by the preceding environment variables. As specified earlier, the NeuronCores share the available host vCPUs and system memory. Therefore, models deployed on each NeuronCore will compete for the available resources. This won’t be an issue if the model is utilizing the NeuronCores to a large extent. But if a model is running only partly on the NeuronCores and the rest on host vCPUs then considering CPU availability per NeuronCore become important. This affects the choice of the instance as well.

The following table shows number of host vCPUs and system memory available per model if one model was deployed to each NeuronCore. Depending on your application’s NeuronCore usage, vCPU, and memory usage, it is recommended to run tests to find out which configuration is most performant for your application. The Neuron Top tool can help in visualizing core utilization and device and host memory utilization. Based on these metrics an informed decision can be made. We demonstrate the use of Neuron Top at the end of this blog.

Instance Size # Inferentia Accelerators # Models vCPUs/Model Memory/Model (GiB)
Inf1.xlarge 1 4 1 2
Inf1.2xlarge 1 4 2 4
Inf1.6xlarge 4 16 1.5 3
Inf1.24xlarge 16 64 1.5 3
Instance Size # Inferentia Accelerators # Models vCPUs/Model Memory/Model (GiB)
Inf2.xlarge 1 2 2 8
Inf2.8xlarge 1 2 16 64
Inf2.24xlarge 6 12 8 32
Inf2.48xlarge 12 24 8 32

To test out the Neuron SDK features yourself, check out the latest Neuron capabilities for PyTorch.

System setup

The following is the system setup used for this solution:

Set up the solution

There are a couple of things we need to do to setup the solution. Start by creating an IAM role that your EC2 instance is going to assume that will allow it to push and pull from Amazon Elastic Container Registry.

Step 1: Setup the IAM role

  1. Start by logging into the console and accessing IAM > Roles > Create Role
  2. Select Trusted entity type AWS Service
  3. Select EC2 as the service under use-case
  4. Click Next and you’ll be able to see all policies available
  5. For the purpose of this solution, we’re going to give our EC2 instance full access to ECR. Filter for AmazonEC2ContainerRegistryFullAccess and select it.
  6. Press next and name the role inf-ecr-access

Note: the policy we attached gives the EC2 instance full access to Amazon ECR. We strongly recommend following the principal of least-privilege for production workloads.

Step 2: Setup AWS CLI

If you’re using the prescribed Deep Learning AMI listed above, it comes with AWS CLI installed. If you’re using a different AMI (Amazon Linux 2023, Base Ubuntu etc.), install the CLI tools by following this guide.

Once you have the CLI tools installed, configure the CLI using the command aws configure. If you have access keys, you can add them here but don’t necessarily need them to interact with AWS services. We’re relying on IAM roles to do that.

Note: We need to enter at-least one value (default region or default format) to create the default profile. For this example, we’re going with us-east-2 as the region and json as the default output.

Clone the Github repository

The GitHub repo provides all the scripts necessary to deploy models using FastAPI on NeuronCores on AWS Inferentia instances. This example uses Docker containers to ensure we can create reusable solutions. Included in this example is the following config.properties file for users to provide inputs.

# Docker Image and Container Name
docker_image_name_prefix=<Docker image name>
docker_container_name_prefix=<Docker container name>

# Deployment Setup
path_to_traced_models=<Path to traced model>
compiled_model=<Compiled model file name>
num_cores=<Number of NeuronCores to Deploy a Model Server>
num_models_per_server=<Number of Models to Be Loaded Per Server>

The configuration file needs user-defined name prefixes for the Docker image and Docker containers. The build.sh script in the fastapi and trace-model folders use this to create Docker images.

Compile a model on AWS Inferentia

We will start with tracing the model and producing a PyTorch Torchscript .pt file. Start by accessing trace-model directory and modifying the .env file. Depending upon the type of instance you chose, modify the CHIP_TYPE within the .env file. As an example, we will choose Inf2 as the guide. The same steps apply to the deployment process for Inf1.

Next set the default region in the same file. This region will be used to create an ECR repository and Docker images will be pushed to this repository. Also in this folder, we provide all the scripts necessary to trace a bert-base-uncased model on AWS Inferentia. This script could be used for most models available on Hugging Face. The Dockerfile has all the dependencies to run models with Neuron and runs the trace-model.py code as the entry point.

Neuron compilation explained

The Neuron SDK’s API closely resembles the PyTorch Python API. The torch.jit.trace() from PyTorch takes the model and sample input tensor as arguments. The sample inputs are fed to the model and the operations that are invoked as that input makes its way through the model’s layers are recorded as TorchScript. To learn more about JIT Tracing in PyTorch, refer to the following documentation.

Just like torch.jit.trace(), you can check to see if your model can be compiled on AWS Inferentia with the following code for inf1 instances.

import torch_neuron
model_traced = torch.neuron.trace(model, 
                                  example_inputs,
                                  compiler_args = 
                                  [‘--fast-math’, ‘fp32-cast-matmul’,
                                   ‘--neuron-core-pipeline-cores’,’1’],
                         optimizations=[torch_neuron.Optimization.FLOAT32_TO_FLOAT16])

For inf2, the library is called torch_neuronx. Here’s how you can test your model compilation against inf2 instances.

import torch
import torch_neuronx
model_traced = torch.neuronx.trace(model, 
                                   example_inputs,
                                   compiler_args = 
                                   [‘--fast-math’, ‘fp32-cast-matmul’,
                                    ‘--neuron-core-pipeline-cores’,’1’],
          optimizations=[torch_neuronx.Optimization.FLOAT32_TO_FLOAT16])

After creating the trace instance, we can pass the example tensor input like so:

answer_logits = model_traced(*example_inputs)

And finally save the resulting TorchScript output on local disk

model_traced.save('./compiled-model-bs-{batch_size}.pt')

As shown in the preceding code, you can use compiler_args and optimizations to optimize the deployment. For a detailed list of arguments for the torch.neuron.trace API, refer to PyTorch-Neuron trace python API.

Keep the following important points in mind:

  • The Neuron SDK doesn’t support dynamic tensor shapes as of this writing. Therefore, a model will have to be compiled separately for different input shapes. For more information on running inference on variable input shapes with bucketing, refer to Running inference on variable input shapes with bucketing.
  • If you face out of memory issues when compiling a model, try compiling the model on an AWS Inferentia instance with more vCPUs or memory, or even a large c6i or r6i instance as compilation only uses CPUs. Once compiled, the traced model can probably be run on smaller AWS Inferentia instance sizes.

Build process explanation

Now we will build this container by running build.sh. The build script file simply creates the Docker image by pulling a base Deep Learning Container Image and installing the HuggingFace transformers package. Based on the CHIP_TYPE specified in the .env file, the docker.properties file decides the appropriate BASE_IMAGE. This BASE_IMAGE points to a Deep Learning Container Image for Neuron Runtime provided by AWS.

It is available through a private ECR repository. Before we can pull the image, we need to login and get temporary AWS credentials.

aws ecr get-login-password --region <region> | docker login --username AWS --password-stdin 763104351884.dkr.ecr.<region>.amazonaws.com

Note: we need to replace the region listed in the command specified by the region flag and within the repository URI with the region we put in the .env file.

For the purpose of making this process easier, we can use the fetch-credentials.sh file. The region will be taken from the .env file automatically.

Next, we’ll push the image using the script push.sh. The push script creates a repository in Amazon ECR for you and pushes the container image.

Finally, when the image is built and pushed, we can run it as a container by running run.sh and tail running logs with logs.sh. In the compiler logs (see the following screenshot), you will see the percentage of arithmetic operators compiled on Neuron and percentage of model sub-graphs successfully compiled on Neuron. The screenshot shows the compiler logs for the bert-base-uncased-squad2 model. The logs show that 95.64% of the arithmetic operators were compiled, and it also gives a list of operators that were compiled on Neuron and those that aren’t supported.

Here is a list of all supported operators in the latest PyTorch Neuron package. Similarly, here is the list of all supported operators in the latest PyTorch Neuronx package.

Deploy models with FastAPI

After the models are compiled, the traced model will be present in the trace-model folder. In this example, we have placed the traced model for a batch size of 1. We consider a batch size of 1 here to account for those use cases where a higher batch size is not feasible or required. For use cases where higher batch sizes are needed, the torch.neuron.DataParallel (for Inf1) or torch.neuronx.DataParallel (for Inf2) API may also be useful.

The fast-api folder provides all the necessary scripts to deploy models with FastAPI. To deploy the models without any changes, simply run the deploy.sh script and it will build a FastAPI container image, run containers on the specified number of cores, and deploy the specified number of models per server in each FastAPI model server. This folder also contains a .env file, modify it to reflect the correct CHIP_TYPE and AWS_DEFAULT_REGION.

Note: FastAPI scripts rely on the same environment variables used to build, push and run the images as containers. FastAPI deployment scripts will use the last known values from these variables. So, if you traced the model for Inf1 instance type last, that model will be deployed through these scripts.

The fastapi-server.py file which is responsible for hosting the server and sending the requests to the model does the following:

  • Reads the number of models per server and the location of the compiled model from the properties file
  • Sets visible NeuronCores as environment variables to the Docker container and reads the environment variables to specify which NeuronCores to use
  • Provides an inference API for the bert-base-uncased-squad2 model
  • With jit.load(), loads the number of models per server as specified in the config and stores the models and the required tokenizers in global dictionaries

With this setup, it would be relatively easy to set up APIs that list which models and how many models are stored in each NeuronCore. Similarly, APIs could be written to delete models from specific NeuronCores.

The Dockerfile for building FastAPI containers is built on the Docker image we built for tracing the models. This is why the docker.properties file specifies the ECR path to the Docker image for tracing the models. In our setup, the Docker containers across all NeuronCores are similar, so we can build one image and run multiple containers from one image. To avoid any entry point errors, we specify ENTRYPOINT ["/usr/bin/env"] in the Dockerfile before running the startup.sh script, which looks like hypercorn fastapi-server:app -b 0.0.0.0:8080. This startup script is the same for all containers. If you’re using the same base image as for tracing models, you can build this container by simply running the build.sh script. The push.sh script remains the same as before for tracing models. The modified Docker image and container name are provided by the docker.properties file.

The run.sh file does the following:

  • Reads the Docker image and container name from the properties file, which in turn reads the config.properties file, which has a num_cores user setting
  • Starts a loop from 0 to num_cores and for each core:
    • Sets the port number and device number
    • Sets the NEURON_RT_VISIBLE_CORES environment variable
    • Specifies the volume mount
    • Runs a Docker container

For clarity, the Docker run command for deploying in NeuronCore 0 for Inf1 would look like the following code:

docker run -t -d 
	    --name $ bert-inf-fastapi-nc-0 
	    --env NEURON_RT_VISIBLE_CORES="0-0" 
	    --env CHIP_TYPE="inf1" 
	    -p ${port_num}:8080 --device=/dev/neuron0 ${registry}/ bert-inf-fastapi

The run command for deploying in NeuronCore 5 would look like the following code:

docker run -t -d 
	    --name $ bert-inf-fastapi-nc-5 
	    --env NEURON_RT_VISIBLE_CORES="5-5" 
	    --env CHIP_TYPE="inf1" 
	    -p ${port_num}:8080 --device=/dev/neuron0 ${registry}/ bert-inf-fastapi

After the containers are deployed, we use the run_apis.py script, which calls the APIs in parallel threads. The code is set up to call six models deployed, one on each NeuronCore, but can be easily changed to a different setting. We call the APIs from the client side as follows:

import requests

url_template = http://localhost:%i/predictions_neuron_core_%i/model_%i

# NeuronCore 0
response = requests.get(url_template % (8081,0,0))

# NeuronCore 5
response = requests.get(url_template % (8086,5,0))

Monitor NeuronCore

After the model servers are deployed, to monitor NeuronCore utilization, we may use neuron-top to observe in real time the utilization percentage of each NeuronCore. neuron-top is a CLI tool in the Neuron SDK to provide information such as NeuronCore, vCPU, and memory utilization. In a separate terminal, enter the following command:

neuron-top

You output should be similar to the following figure. In this scenario, we have specified to use two NeuronCores and two models per server on an Inf2.xlarge instance. The following screenshot shows that two models of size 287.8MB each are loaded on two NeuronCores. With a total of 4 models loaded, you can see the device memory used is 1.3 GB. Use the arrow keys to move between the NeuronCores on different devices

Similarly, on an Inf1.16xlarge instance type we see a total of 12 models (2 models per core over 6 cores) loaded. A total memory of 2.1GB is consumed and every model is 177.2MB in size.

After you run the run_apis.py script, you can see the percentage of utilization of each of the six NeuronCores (see the following screenshot). You can also see the system vCPU usage and runtime vCPU usage.

The following screenshot shows the Inf2 instance core usage percentage.

Similarly, this screenshot shows core utilization in an inf1.6xlarge instance type.

Clean up

To clean up all the Docker containers you created, we provide a cleanup.sh script that removes all running and stopped containers. This script will remove all containers, so don’t use it if you want to keep some containers running.

Conclusion

Production workloads often have high throughput, low latency, and cost requirements. Inefficient architectures that sub-optimally utilize accelerators could lead to unnecessarily high production costs. In this post, we showed how to optimally utilize NeuronCores with FastAPI to maximize throughput at minimum latency. We have published the instructions on our GitHub repo. With this solution architecture, you can deploy multiple models in each NeuronCore and operate multiple models in parallel on different NeuronCores without losing performance. For more information on how to deploy models at scale with services like Amazon Elastic Kubernetes Service (Amazon EKS), refer to Serve 3,000 deep learning models on Amazon EKS with AWS Inferentia for under $50 an hour.


About the authors

Ankur Srivastava is a Sr. Solutions Architect in the ML Frameworks Team. He focuses on helping customers with self-managed distributed training and inference at scale on AWS. His experience includes industrial predictive maintenance, digital twins, probabilistic design optimization and has completed his doctoral studies from Mechanical Engineering at Rice University and post-doctoral research from Massachusetts Institute of Technology.

K.C. Tung is a Senior Solution Architect in AWS Annapurna Labs. He specializes in large deep learning model training and deployment at scale in cloud. He has a Ph.D. in molecular biophysics from the University of Texas Southwestern Medical Center in Dallas. He has spoken at AWS Summits and AWS Reinvent. Today he helps customers to train and deploy large PyTorch and TensorFlow models in AWS cloud. He is the author of two books: Learn TensorFlow Enterprise and TensorFlow 2 Pocket Reference.

Pronoy Chopra is a Senior Solutions Architect with the Startups Generative AI team at AWS. He specializes in architecting and developing IoT and Machine Learning solutions. He has co-founded two startups in the past and enjoys being hands-on with projects in the IoT, AI/ML and Serverless domain.

Read More

Analyze rodent infestation using Amazon SageMaker geospatial capabilities

Analyze rodent infestation using Amazon SageMaker geospatial capabilities

Rodents such as rats and mice are associated with a number of health risks and are known to spread more than 35 diseases. Identifying regions of high rodent activity can help local authorities and pest control organizations plan for interventions effectively and exterminate the rodents.

In this post, we show how to monitor and visualize a rodent population using Amazon SageMaker geospatial capabilities. We then visualize rodent infestation effects on vegetation and bodies of water. Finally, we correlate and visualize the number of monkey pox cases reported with rodent sightings in a region. Amazon SageMaker makes it easier for data scientists and machine learning (ML) engineers to build, train, and deploy models using geospatial data. The tool makes it easier to access geospatial data sources, run purpose-built processing operations, apply pre-trained ML models, and use built-in visualization tools faster and at scale.

Notebook

First, we use an Amazon SageMaker Studio notebook with a geospatial image by following the steps outlined in Getting Started with Amazon SageMaker geospatial capabilities.

Data access

The geospatial image comes preinstalled with SageMaker geospatial capabilities that make it easier to enrich data for geospatial analysis and ML. For our post, we use satellite images from Sentinel-2 and the rodent activity and monkeypox datasets from open-source NYC open data.

First, we use the rodent activity and extract the latitude and longitude of rodent sightings and inspections. Then we enrich this location information with human-readable street addresses. We create a vector enrichment job (VEJ) in the SageMaker Studio notebook to run a reverse geocoding operation so that you can convert geographic coordinates (latitude, longitude) to human-readable addresses, powered by Amazon Location Service. We create the VEJ as follows:

import boto3
import botocore
import sagemaker
import sagemaker_geospatial_map

region = boto3.Session().region_name
session = botocore.session.get_session()
execution_role = sagemaker.get_execution_role()

sg_client= session.create_client(
    service_name='sagemaker-geospatial',
    region_name=region
)
response = sg_client.start_vector_enrichment_job(
    ExecutionRoleArn=execution_role,
    InputConfig={
        'DataSourceConfig': {
            'S3Data': {
                'S3Uri': 's3://<bucket>/sample/rodent.csv'
            }
        },
        'DocumentType': 'CSV'
    },
    JobConfig={
        "ReverseGeocodingConfig": { 
         "XAttributeName": "longitude",
         "YAttributeName": "latitude"
      }
    },
    Name='vej-reversegeo',
)

my_vej_arn = response['Arn']

Visualize rodent activity in a region

Now we can use SageMaker geospatial capabilities to visualize rodent sightings. After the VEJ is complete, we export the output of the job to an Amazon S3 bucket.

sg_client.export_vector_enrichment_job(
    Arn=my_vej_arn,
    ExecutionRoleArn=execution_role,
    OutputConfig={
        'S3Data': {
            'S3Uri': 's3://<bucket>/reversegeo/'
        }
    }
)

When the export is complete, you will see the output CSV file in your Amazon Simple Storage Service (Amazon S3) bucket, which consists of your input data (longitude and latitude coordinates) along with additional columns: address number, country, label, municipality, neighborhood, postal code, and region of that location appended at the end.

From the output file generated by VEJ, we can use SageMaker geospatial capabilities to overlay the output on a base map and provide layered visualization to make collaboration easier. SageMaker geospatial capabilities provide built-in visualization tooling powered by Foursquare Studio, which natively works from within a SageMaker notebook via the SageMaker geospatial Map SDK. Below, we can visualize the rodent sightings and also get the human readable addresses for each of the data points. The address information of each of the rodent sightings data points can be useful for rodent inspection and treatment purposes.

Analyze the effects of rodent infestation on vegetation and bodies of water

To analyze the effects of rodent infestation on vegetation and bodies of water, we need to classify each location as vegetation, water, and bare ground. Let’s look at how we can use these geospatial capabilities to perform this analysis.

The new geospatial capabilities in SageMaker offer easier access to geospatial data such as Sentinel-2 and Landsat 8. Built-in geospatial dataset access saves weeks of effort otherwise lost to collecting and processing data from various data providers and vendors. Also, these geospatial capabilities offer a pre-trained Land Use Land Cover (LULC) segmentation model to identify the physical material, such as vegetation, water, and bare ground, at the earth surface.

We use this LULC ML model to analyze the effects of rodent population on vegetation and bodies of water.

In the following code snippet, we first define the area of interest coordinates (aoi_coords) of New York City. Then we create an Earth Observation Job (EOJ) and select the LULC operation. SageMaker downloads and preprocesses the satellite image data for the EOJ. Next, SageMaker automatically runs model inference for the EOJ. The runtime of the EOJ will vary from several minutes to hours depending on the number of images processed. You can monitor the status of EOJs using the get_earth_observation_job function, and visualize the input and output of the EOJ in the map.

aoi_coords = [
    [
            [
              -74.13513011934334,
              40.87856296920188
            ],
            [
              -74.13513011934334,
              40.565792636343616
            ],
            [
              -73.8247144462764,
              40.565792636343616
            ],
            [
              -73.8247144462764,
              40.87856296920188
            ],
            [
              -74.13513011934334,
              40.87856296920188
            ]
    ]
]

eoj_input_config = {
    "RasterDataCollectionQuery": {
        "RasterDataCollectionArn": "arn:aws:sagemaker-geospatial:us-west-2:378778860802:raster-data-collection/public/nmqj48dcu3g7ayw8",
        "AreaOfInterest": {
            "AreaOfInterestGeometry": {
                "PolygonGeometry": {
                    "Coordinates": aoi_coords
                }
            }
        },
        "TimeRangeFilter": {
            "StartTime": "2023-01-01T00:00:00Z",
            "EndTime": "2023-02-28T23:59:59Z",
        },
        "PropertyFilters": {
            "Properties": [{"Property": {"EoCloudCover": {"LowerBound": 0, "UpperBound": 2.0}}}],
            "LogicalOperator": "AND",
        },
    }
}
eoj_config = {
  "LandCoverSegmentationConfig": {}
}

response = geospatial_client.start_earth_observation_job(
    Name="eoj-rodent-infestation-lulc-example",
    InputConfig=eoj_input_config,
    JobConfig=eoj_config,
    ExecutionRoleArn=execution_role,
)
eoj_arn = response["Arn"]
eoj_arn

Map = sagemaker_geospatial_map.create_map()
Map.set_sagemaker_geospatial_client(sg_client)

Map.render()

time_range_filter = {
    "start_date": "2023-01-01T00:00:00Z",
    "end_date": "2023-02-28T23:59:59Z",
}


config = {"preset": "singleBand", "band_name": "mask"}
output_layer = Map.visualize_eoj_output(
    Arn=eoj_arn, config=config, time_range_filter=time_range_filter
)

To visualize the rodent population with respect to vegetation, we overlay the rodent population and sighting data on the land cover segmentation model predictions. This visualization can help us locate the population of rodents and analyze it on vegetation and bodies of water.

Visualize monkeypox cases and corelating with rodent data

To visualize the relation between the monkeypox cases and rodent sightings, we add the monkeypox dataset and the geoJSON file for New York City borough boundaries. See the following code:

nybb = pd.read_csv("./nybb.csv")
monkeypox = pd.read_csv("./monkeypox.csv")
dataset = Map.add_dataset({
    "data": nybb
}, auto_create_layers=False)
dataset = Map.add_dataset({
    "data": monkeypox
}, auto_create_layers=False)

Within a SageMaker Studio notebook, we can use the visualization tool powered by Foursquare to add layers in the map and add charts. Here, we added the monkeypox data as a chart to show the number of monkeypox cases for each of the boroughs. To see the correlation between monkeypox cases and rodent sightings, we have added the borough boundaries as a polygon layer and added the heatmap layer that represents rodent activity. The borough boundary layer is colored to match the monkeypox data chart. As we can see, the borough of Manhattan exhibits a high concentration of rodent sightings and records the highest number of monkeypox cases, followed by Brooklyn.

This is supported by a simple statistical analysis of calculating the correlation between the concentration of rodent sightings and monkeypox cases in each borough. The calculation produced an r value of 0.714, which implies a positive correlation.

r = np.corrcoef(borough_stats['Concentration (sightings per square km)'], borough_stats['Monkeypox Cases'])

Conclusion

In this post, we demonstrated how you can use SageMaker geospatial capabilities to get detailed addresses of rodent sightings and visualize the rodent effects on vegetation and bodies of water. This can help local authorities and pest control organizations plan for interventions effectively and exterminate rodents. We also correlated the rodent sightings to monkeypox cases in the area with the built-in visualization tool. By utilizing vector enrichment and EOJs along with the built-in visualization tools, SageMaker geospatial capabilities eliminate the challenges of handling large-scale geospatial datasets, model training, and inference, and provide the ability to rapidly explore predictions and geospatial data on an interactive map using 3D accelerated graphics and built-in visualization tools.

You can get started with SageMaker geospatial capabilities in two ways:

To learn more, visit Amazon SageMaker geospatial capabilities and Getting Started with Amazon SageMaker geospatial capabilitites. Also, visit our GitHub repo, which has several example notebooks on SageMaker geospatial capabilities.


About the authors

Bunny Kaushik is a Solutions Architect at AWS. He is passionate about building AI/ML solutions and helping customers innovate on the AWS platform. Outside of work, he enjoys hiking, rock climbing, and swimming.

Clarisse Vigal is a Sr. Technical Account Manager at AWS, focused on helping customers accelerate their cloud adoption journey. Outside of work, Clarisse enjoys traveling, hiking, and reading sci-fi thrillers.

Veda Raman is a Senior Specialist Solutions Architect for machine learning based in Maryland. Veda works with customers to help them architect efficient, secure and scalable machine learning applications. Veda is interested in helping customers leverage serverless technologies for Machine learning.

Read More

Enel automates large-scale power grid asset management and anomaly detection using Amazon SageMaker

Enel automates large-scale power grid asset management and anomaly detection using Amazon SageMaker

This is a guest post by Mario Namtao Shianti Larcher, Head of Computer Vision at Enel.

Enel, which started as Italy’s national entity for electricity, is today a multinational company present in 32 countries and the first private network operator in the world with 74 million users. It is also recognized as the first renewables player with 55.4 GW of installed capacity. In recent years, the company has invested heavily in the machine learning (ML) sector by developing strong in-house know-how that has enabled them to realize very ambitious projects such as automatic monitoring of its 2.3 million kilometers of distribution network.

Every year, Enel inspects its electricity distribution network with helicopters, cars, or other means; takes millions of photographs; and reconstructs the 3D image of its network, which is a point cloud 3D reconstruction of the network, obtained using LiDAR technology.

Examination of this data is critical for monitoring the state of the power grid, identifying infrastructure anomalies, and updating databases of installed assets, and it allows granular control of the infrastructure down to the material and status of the smallest insulator installed on a given pole. Given the amount of data (more than 40 million images each year just in Italy), the number of items to be identified, and their specificity, a completely manual analysis is very costly, both in terms of time and money, and error prone. Fortunately, thanks to enormous advances in the world of computer vision and deep learning and the maturity and democratization of these technologies, it’s possible to automate this expensive process partially or even completely.

Of course, the task remains very challenging, and, like all modern AI applications, it requires computing power and the ability to handle large volumes of data efficiently.

Enel built its own ML platform (internally called the ML factory) based on Amazon SageMaker, and the platform is established as the standard solution to build and train models at Enel for different use cases, across different digital hubs (business units) with tens of ML projects being developed on Amazon SageMaker Training, Amazon SageMaker Processing, and other AWS services like AWS Step Functions.

Enel collects imagery and data from two different sources:

  1. Aerial network inspections:
    • LiDAR point clouds – They have the advantage of being an extremely accurate and geo-localized 3D reconstruction of the infrastructure, and therefore are very useful for calculating distances or taking measurements with an accuracy not obtainable from 2D image analysis.
    • High-resolution images – These images of the infrastructure are taken within seconds of each other. This makes it possible to detect elements and anomalies that are too small to be identified in the point cloud.
  2. Satellite images – Although these can be more affordable than a power line inspection (some are available for free or for a fee), their resolution and quality is often not on par with images taken directly by Enel. The characteristics of these images make them useful for certain tasks like evaluating forest density and macro-category or finding buildings.

In this post, we discuss the details of how Enel uses these three sources, and share how Enel automates their large-scale power grid assessment management and anomaly detection process using SageMaker.

Analyzing high-resolution photographs to identify assets and anomalies

As with other unstructured data collected during inspections, the photographs taken are stored on Amazon Simple Storage Service (Amazon S3). Some of these are manually labeled with the goal of training different deep learning models for different computer vision tasks.

Conceptually, the processing and inference pipeline involves a hierarchical approach with multiple steps: first, the regions of interest in the image are identified, then these are cropped, assets are identified within them, and finally these are classified according to the material or presence of anomalies on them. Because the same pole often appears in more than one image, it’s also necessary to be able to group its images to avoid duplicates, an operation called reidentification.

For all these tasks, Enel uses the PyTorch framework and the latest architectures for image classification and object detection, such as EfficientNet/EfficientDet or others for the semantic segmentation of certain anomalies, such as oil leaks on transformers. For the reidentification task, if they can’t do it geometrically because they lack camera parameters, they use SimCLR-based self-supervised methods or Transformer-based architectures are used. It would be impossible to train all these models without having access to a large number of instances equipped with high-performance GPUs, so all the models were trained in parallel using Amazon SageMaker Training jobs with GPU accelerated ML instances. Inference has the same structure and is orchestrated by a Step Functions state machine that governs several SageMaker processing and training jobs that, despite the name, are as usable in training as in inference.

The following is a high-level architecture of the ML pipeline with its main steps.

Architectural Diagram

This diagram shows the simplified architecture of the ODIN image inference pipeline, which extracts and analyzes ROIs (such as electricity posts) from dataset images. The pipeline further drills down on ROIs, extracting and analyzing electrical elements (transformers, insulators, and so on). After the components (ROIs and elements) are finalized, the reidentification process begins: images and poles in the network map are matched based on 3D metadata. This allows the clustering of ROIs referring to the same pole. After that, anomalies get finalized and reports are generated.

Extracting precise measurements using LiDAR point clouds

High-resolution photographs are very useful, but because they’re 2D, it’s impossible to extract precise measurements from them. LiDAR point clouds come to the rescue here, because they are 3D and have each point in the cloud a position with an associated error of less than a handful of centimeters.

However, in many cases, a raw point cloud is not useful, because you can’t do much with it if you don’t know whether a set of points represents a tree, a power line, or a house. For this reason, Enel uses KPConv, a semantic point cloud segmentation algorithm, to assign a class to each point. After the cloud is classified, it’s possible to figure out whether vegetation is too close to the power line rather than measuring the tilt of poles. Due to the flexibility of SageMaker services, the pipeline of this solution is not much different from the one already described, with the only difference being that in this case it is necessary to use GPU instances for inference as well.

The following are some examples of point cloud images.

LiDAR image 1

LiDAR image2

Looking at the power grid from space: Mapping vegetation to prevent service disruptions

Inspecting the power grid with helicopters and other means is generally very expensive and can’t be done too frequently. On the other hand, having a system to monitor vegetation trends in short time intervals is extremely useful for optimizing one of the most expensive processes of an energy distributor: tree pruning. This is why Enel also included in its solution the analysis of satellite images, from which with a multitask approach is identified where vegetation is present, its density, and the type of plants divided into macro classes.

For this use case, after experimenting with different resolutions, Enel concluded that the free Sentinel 2 images provided by the Copernicus program had the best cost-benefit ratio. In addition to vegetation, Enel also uses satellite imagery to identify buildings, which is useful information to understand if there are discrepancies between their presence and where Enel delivers power and therefore any irregular connections or problems in the databases. For the latter use case, the resolution of Sentinel 2, where one pixel represents an area of 10 square meters, is not sufficient, and so paid-for images with a resolution of 50 square centimeters are purchased. This solution also doesn’t differ much from the previous ones in terms of services used and flow.

The following is an aerial picture with identification of assets (pole and insulators).

Angela Italiano, Director of Data Science at ENEL Grid, says,

“At Enel, we use computer vision models to inspect our electricity distribution network by reconstructing 3D images of our network using tens of millions of high-quality images and LiDAR point clouds. The training of these ML models requires access to a large number of instances equipped with high-performance GPUs and the ability to handle large volumes of data efficiently. With Amazon SageMaker, we can quickly train all of our models in parallel without needing to manage the infrastructure as Amazon SageMaker training scales the compute resources up and down as needed. Using Amazon SageMaker, we are able to build 3D images of our systems, monitor for anomalies, and serve over 60 million customers efficiently.”

Conclusion

In this post, we saw how a top player in the energy world like Enel used computer vision models and SageMaker training and processing jobs to solve one of the main problems of those who have to manage an infrastructure of this colossal size, keep track of installed assets, and identify anomalies and sources of danger for a power line such as vegetation too close to it.

Learn more about the related features of SageMaker.


About the Authors

Mario Namtao Shianti Larcher is the Head of Computer Vision at Enel. He has a background in mathematics, statistics, and a profound expertise in machine learning and computer vision, he leads a team of over ten professionals. Mario’s role entails implementing advanced solutions that effectively utilize the power of AI and computer vision to leverage Enel’s extensive data resources. In addition to his professional endeavors, he nurtures a personal passion for both traditional and AI-generated art.

Cristian Gavazzeni is a Senior Solution Architect at Amazon Web Services. He has more than 20 years of experience as a pre-sales consultant focusing on Data Management, Infrastructure and Security. During his spare time he likes playing golf with friends and travelling abroad with only fly and drive bookings.

Giuseppe Angelo Porcelli is a Principal Machine Learning Specialist Solutions Architect for Amazon Web Services. With several years software engineering an ML background, he works with customers of any size to deeply understand their business and technical needs and design AI and Machine Learning solutions that make the best use of the AWS Cloud and the Amazon Machine Learning stack. He has worked on projects in different domains, including MLOps, Computer Vision, NLP, and involving a broad set of AWS services. In his free time, Giuseppe enjoys playing football.

Read More

Efficiently train, tune, and deploy custom ensembles using Amazon SageMaker

Efficiently train, tune, and deploy custom ensembles using Amazon SageMaker

Artificial intelligence (AI) has become an important and popular topic in the technology community. As AI has evolved, we have seen different types of machine learning (ML) models emerge. One approach, known as ensemble modeling, has been rapidly gaining traction among data scientists and practitioners. In this post, we discuss what ensemble models are and why their usage can be beneficial. We then provide an example of how you can train, optimize, and deploy your custom ensembles using Amazon SageMaker.

Ensemble learning refers to the use of multiple learning models and algorithms to gain more accurate predictions than any single, individual learning algorithm. They have been proven to be efficient in diverse applications and learning settings such as cybersecurity [1] and fraud detection, remote sensing, predicting best next steps in financial decision-making, medical diagnosis, and even computer vision and natural language processing (NLP) tasks. We tend to categorize ensembles by the techniques used to train them, their composition, and the way they merge the different predictions into a single inference. These categories include:

  • Boosting – Training sequentially multiple weak learners, where each incorrect prediction from previous learners in the sequence is given a higher weight and input to the next learner, thereby creating a stronger learner. Examples include AdaBoost, Gradient Boosting, and XGBoost.
  • Bagging – Uses multiple models to reduce the variance of a single model. Examples include Random Forest and Extra Trees.
  • Stacking (blending) – Often uses heterogenous models, where predictions of each individual estimator are stacked together and used as input to a final estimator that handles the prediction. This final estimator’s training process often uses cross-validation.

There are multiple methods of combining the predictions into the single one that the model finally produce, for example, using a meta-estimator such as linear learner, a voting method that uses multiple models to make a prediction based on majority voting for classification tasks, or an ensemble averaging for regression.

Although several libraries and frameworks provide implementations of ensemble models, such as XGBoost, CatBoost, or scikit-learn’s random forest, in this post we focus on bringing your own models and using them as a stacking ensemble. However, instead of using dedicated resources for each model (dedicated training and tuning jobs and hosting endpoints per model), we train, tune, and deploy a custom ensemble (multiple models) using a single SageMaker training job and a single tuning job, and deploy to a single endpoint, thereby reducing possible cost and operational overhead.

BYOE: Bring your own ensemble

There are several ways to train and deploy heterogenous ensemble models with SageMaker: you can train each model in a separate training job and optimize each model separately using Amazon SageMaker Automatic Model Tuning. When hosting these models, SageMaker provides various cost-effective ways to host multiple models on the same tenant infrastructure. Detailed deployment patterns for this kind of settings can be found in Model hosting patterns in Amazon SageMaker, Part 1: Common design patterns for building ML applications on Amazon SageMaker. These patterns include using multiple endpoints (for each trained model) or a single multi-model endpoint, or even a single multi-container endpoint where the containers can be invoked individually or chained in a pipeline. All these solutions include a meta-estimator (for example in an AWS Lambda function) that invokes each model and implements the blending or voting function.

However, running multiple training jobs might introduce operational and cost overhead, especially if your ensemble requires training on the same data. Similarly, hosting different models on separate endpoints or containers and combining their prediction results for better accuracy requires multiple invocations, and therefore introduces additional management, cost, and monitoring efforts. For example, SageMaker supports ensemble ML models using Triton Inference Server, but this solution requires the models or model ensembles to be supported by the Triton backend. Additionally, additional efforts are required from the customer to set up the Triton server and additional learning to understand how different Triton backends work. Therefore, customers prefer a more straightforward way to implement solutions where they only need to send the invocation once to the endpoint and have the flexibility to control how the results are aggregated to generate the final output.

Solution overview

To address these concerns, we walk through an example of ensemble training using a single training job, optimizing the model’s hyperparameters and deploying it using a single container to a serverless endpoint. We use two models for our ensemble stack: CatBoost and XGBoost (both of which are boosting ensembles). For our data, we use the diabetes dataset [2] from the scikit-learn library: It consists of 10 features (age, sex, body mass, blood pressure, and six blood serum measurements), and our model predicts the disease progression 1 year after baseline features were collected (a regression model).

The full code repository can be found on GitHub.

Train multiple models in a single SageMaker job

For training our models, we use SageMaker training jobs in Script mode. With Script mode, you can write custom training (and later inference code) while using SageMaker framework containers. Framework containers enable you to use ready-made environments managed by AWS that include all necessary configuration and modules. To demonstrate how you can customize a framework container, as an example, we use the pre-built SKLearn container, which doesn’t include the XGBoost and CatBoost packages. There are two options to add these packages: either extend the built-in container to install CatBoost and XGBoost (and then deploy as a custom container), or use the SageMaker training job script mode feature, which allows you to provide a requirements.txt file when creating the training estimator. The SageMaker training job installs the listed libraries in the requirements.txt file during run time. This way, you don’t need to manage your own Docker image repository and it provides more flexibility to running training scripts that need additional Python packages.

The following code block shows the code we use to start the training. The entry_point parameter points to our training script. We also use two of the SageMaker SDK API’s compelling features:

  • First, we specify the local path to our source directory and dependencies in the source_dir and dependencies parameters, respectively. The SDK will compress and upload those directories to Amazon Simple Storage Service (Amazon S3) and SageMaker will make them available on the training instance under the working directory /opt/ml/code.
  • Second, we use the SDK SKLearn estimator object with our preferred Python and framework version, so that SageMaker will pull the corresponding container. We have also defined a custom training metric ‘validation:rmse‘, which will be emitted in the training logs and captured by SageMaker. Later, we use this metric as the objective metric in the tuning job.
hyperparameters = {"num_round": 6, "max_depth": 5}
estimator_parameters = {
    "entry_point": "multi_model_hpo.py",
    "source_dir": "code",
    "dependencies": ["my_custom_library"],
    "instance_type": training_instance_type,
    "instance_count": 1,
    "hyperparameters": hyperparameters,
    "role": role,
    "base_job_name": "xgboost-model",
    "framework_version": "1.0-1",
    "keep_alive_period_in_seconds": 60,
    "metric_definitions":[
       {'Name': 'validation:rmse', 'Regex': 'validation-rmse:(.*?);'}
    ]
}
estimator = SKLearn(**estimator_parameters)

Next, we write our training script (multi_model_hpo.py). Our script follows a simple flow: capture hyperparameters with which the job was configured and train the CatBoost model and XGBoost model. We also implement a k-fold cross validation function. See the following code:

if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    # Sagemaker specific arguments. Defaults are set in the environment variables.
    parser.add_argument("--output-data-dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"])
    parser.add_argument("--model-dir", type=str, default=os.environ["SM_MODEL_DIR"])
    parser.add_argument("--train", type=str, default=os.environ["SM_CHANNEL_TRAIN"])
    parser.add_argument("--validation", type=str, default=os.environ["SM_CHANNEL_VALIDATION"])
    .
    .
    .
    
    """
    Train catboost
    """
    
    K = args.k_fold    
    catboost_hyperparameters = {
        "max_depth": args.max_depth,
        "eta": args.eta,
    }
    rmse_list, model_catboost = cross_validation_catboost(train_df, K, catboost_hyperparameters)
    .
    .
    .
    
    """
    Train the XGBoost model
    """

    hyperparameters = {
        "max_depth": args.max_depth,
        "eta": args.eta,
        "objective": args.objective,
        "num_round": args.num_round,
    }

    rmse_list, model_xgb = cross_validation(train_df, K, hyperparameters)

After the models are trained, we calculate the mean of both the CatBoost and XGBoost predictions. The result, pred_mean, is our ensemble’s final prediction. Then, we determine the mean_squared_error against the validation set. val_rmse is used for the evaluation of the whole ensemble during training. Notice that we also print the RMSE value in a pattern that fits the regex we used in the metric_definitions. Later, SageMaker Automatic Model Tuning will use that to capture the objective metric. See the following code:

pred_mean = np.mean(np.array([pred_catboost, pred_xgb]), axis=0)
val_rmse = mean_squared_error(y_validation, pred_mean, squared=False)
print(f"Final evaluation result: validation-rmse:{val_rmse}")

Finally, our script saves both model artifacts to the output folder located at /opt/ml/model.

When a training job is complete, SageMaker packages and copies the content of the /opt/ml/model directory as a single object in compressed TAR format to the S3 location that you specified in the job configuration. In our case, SageMaker bundles the two models in a TAR file and uploads it to Amazon S3 at the end of the training job. See the following code:

model_file_name = 'catboost-regressor-model.dump'
   
    # Save CatBoost model
    path = os.path.join(args.model_dir, model_file_name)
    print('saving model file to {}'.format(path))
    model.save_model(path)
   .
   .
   .
   # Save XGBoost model
   model_location = args.model_dir + "/xgboost-model"
   pickle.dump(model, open(model_location, "wb"))
   logging.info("Stored trained model at {}".format(model_location))

In summary, you should notice that in this procedure we downloaded the data one time and trained two models using a single training job.

Automatic ensemble model tuning

Because we’re building a collection of ML models, exploring all of the possible hyperparameter permutations is impractical. SageMaker offers Automatic Model Tuning (AMT), which looks for the best model hyperparameters by focusing on the most promising combinations of values within ranges that you specify (it’s up to you to define the right ranges to explore). SageMaker supports multiple optimization methods for you to choose from.

We start by defining the two parts of the optimization process: the objective metric and hyperparameters we want to tune. In our example, we use the validation RMSE as the target metric and we tune eta and max_depth (for other hyperparameters, refer to XGBoost Hyperparameters and CatBoost hyperparameters):

from sagemaker.tuner import (
    IntegerParameter,
    ContinuousParameter,
    HyperparameterTuner,
)

hyperparameter_ranges = {
    "eta": ContinuousParameter(0.2, 0.3),
    "max_depth": IntegerParameter(3, 4)
}
metric_definitions = [{"Name": "validation:rmse", "Regex": "validation-rmse:([0-9\.]+)"}]
objective_metric_name = "validation:rmse"

We also need to ensure in the training script that our hyperparameters are not hardcoded and are pulled from the SageMaker runtime arguments:

catboost_hyperparameters = {
    "max_depth": args.max_depth,
    "eta": args.eta,
}

SageMaker also writes the hyperparameters to a JSON file and can be read from /opt/ml/input/config/hyperparameters.json on the training instance.

Like CatBoost, we also capture the hyperparameters for the XGBoost model (notice that objective and num_round aren’t tuned):

catboost_hyperparameters = {
    "max_depth": args.max_depth,
    "eta": args.eta,
}

Finally, we launch the hyperparameter tuning job using these configurations:

tuner = HyperparameterTuner(
    estimator, 
    objective_metric_name,
    hyperparameter_ranges, 
    max_jobs=4, 
    max_parallel_jobs=2, 
    objective_type='Minimize'
)
tuner.fit({"train": train_location, "validation": validation_location}, include_cls_metadata=False)

When the job is complete, you can retrieve the values for the best training job (with minimal RMSE):

job_name=tuner.latest_tuning_job.name
attached_tuner = HyperparameterTuner.attach(job_name)
attached_tuner.describe()["BestTrainingJob"]

For more information on AMT, refer to Perform Automatic Model Tuning with SageMaker.

Deployment

To deploy our custom ensemble, we need to provide a script to handle the inference request and configure SageMaker hosting. In this example, we used a single file that includes both the training and inference code (multi_model_hpo.py). SageMaker uses the code under if _ name _ == "_ main _" for the training and the functions model_fn, input_fn, and predict_fn when deploying and serving the model.

Inference script

As with training, we use the SageMaker SKLearn framework container with our own inference script. The script will implement three methods required by SageMaker.

First, the model_fn method reads our saved model artifact files and loads them into memory. In our case, the method returns our ensemble as all_model, which is a Python list, but you can also use a dictionary with model names as keys.

def model_fn(model_dir):
    catboost_model = CatBoostRegressor()
    catboost_model.load_model(os.path.join(model_dir, model_file_name))
    
    model_file = "xgboost-model"
    model = pickle.load(open(os.path.join(model_dir, model_file), "rb"))
    
    all_model = [catboost_model, model]
    return all_model

Second, the input_fn method deserializes the request input data to be passed to our inference handler. For more information about input handlers, refer to Adapting Your Own Inference Container.

def input_fn(input_data, content_type):
    dtype=None
    payload = StringIO(input_data)
    return np.genfromtxt(payload, dtype=dtype, delimiter=",")

Third, the predict_fn method is responsible for getting predictions from the models. The method takes the model and the data returned from input_fn as parameters and returns the final prediction. In our example, we get the CatBoost result from the model list first member (model[0]) and the XGBoost from the second member (model[1]), and we use a blending function that returns the mean of both predictions:

def predict_fn(input_data, model):
    predictions_catb = model[0].predict(input_data)
    
    dtest = xgb.DMatrix(input_data)
    predictions_xgb = model[1].predict(dtest,
                                          ntree_limit=getattr(model, "best_ntree_limit", 0),
                                          validate_features=False)
    
    return np.mean(np.array([predictions_catb, predictions_xgb]), axis=0)

Now that we have our trained models and inference script, we can configure the environment to deploy our ensemble.

SageMaker Serverless Inference

Although there are many hosting options in SageMaker, in this example, we use a serverless endpoint. Serverless endpoints automatically launch compute resources and scale them in and out depending on traffic. This takes away the undifferentiated heavy lifting of managing servers. This option is ideal for workloads that have idle periods between traffic spurts and can tolerate cold starts.

Configuring the serverless endpoint is straightforward because we don’t need to choose instance types or manage scaling policies. We only need to provide two parameters: memory size and maximum concurrency. The serverless endpoint automatically assigns compute resources proportional to the memory you select. If you choose a larger memory size, your container has access to more vCPUs. You should always choose your endpoint’s memory size according to your model size. The second parameter we need to provide is maximum concurrency. For a single endpoint, this parameter can be set up to 200 (as of this writing, the limit for total number of serverless endpoints in a Region is 50). You should note that the maximum concurrency for an individual endpoint prevents that endpoint from taking up all the invocations allowed for your account, because any endpoint invocations beyond the maximum are throttled (for more information about the total concurrency for all serverless endpoints per Region, refer to Amazon SageMaker endpoints and quotas).

from sagemaker.serverless.serverless_inference_config import ServerlessInferenceConfig
serverless_config = ServerlessInferenceConfig(
    memory_size_in_mb=6144,
    max_concurrency=1,
) 

Now that we configured the endpoint, we can finally deploy the model that was selected in our hyperparameter optimization job:

estimator=attached_tuner.best_estimator()
predictor = estimator.deploy(serverless_inference_config=serverless_config)

Clean up

Even though serverless endpoints have zero cost when not being used, when you have finished running this example, you should make sure to delete the endpoint:

predictor.delete_endpoint(predictor.endpoint)

Conclusion

In this post, we covered one approach to train, optimize, and deploy a custom ensemble. We detailed the process of using a single training job to train multiple models, how to use automatic model tuning to optimize the ensemble hyperparameters, and how to deploy a single serverless endpoint that blends the inferences from multiple models.

Using this method solves potential cost and operational issues. The cost of a training job is based on the resources you use for the duration of usage. By downloading the data only once for training the two models, we reduced by half the job’s data download phase and the used volume that stores the data, thereby reducing the training job’s overall cost. Furthermore, the AMT job ran four training jobs, each with the aforementioned reduced time and storage, so that represent 4 times in cost saving! With regard to model deployment on a serverless endpoint, because you also pay for the amount of data processed, by invoking the endpoint only once for two models, you pay half of the I/O data charges.

Although this post only showed the benefits with two models, you can use this method to train, tune, and deploy numerous ensemble models to see an even greater effect.

References

[1] Raj Kumar, P. Arun; Selvakumar, S. (2011). “Distributed denial of service attack detection using an ensemble of neural classifier”. Computer Communications. 34 (11): 1328–1341. doi:10.1016/j.comcom.2011.01.012.

[2] Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) “Least Angle Regression,” Annals of Statistics (with discussion), 407-499. (https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf)


About the Authors

Melanie Li, PhD, is a Senior AI/ML Specialist TAM at AWS based in Sydney, Australia. She helps enterprise customers to build solutions leveraging the state-of-the-art AI/ML tools on AWS and provides guidance on architecting and implementing machine learning solutions with best practices. In her spare time, she loves to explore nature outdoors and spend time with family and friends.

Uri Rosenberg is the AI & ML Specialist Technical Manager for Europe, Middle East, and Africa. Based out of Israel, Uri works to empower enterprise customers to design, build, and operate ML workloads at scale. In his spare time, he enjoys cycling, hiking, and minimizing RMSEs.

Read More