Google at CVPR 2023

Google at CVPR 2023

This week marks the beginning of the premier annual Computer Vision and Pattern Recognition conference (CVPR 2023), held in-person in Vancouver, BC (with additional virtual content). As a leader in computer vision research and a Platinum Sponsor, Google Research will have a strong presence across CVPR 2023 with 90 papers being presented at the main conference and active involvement in over 40 conference workshops and tutorials.

If you are attending CVPR this year, please stop by our booth to chat with our researchers who are actively exploring the latest techniques for application to various areas of machine perception. Our researchers will also be available to talk about and demo several recent efforts, including on-device ML applications with MediaPipe, strategies for differential privacy, neural radiance field technologies and much more.

You can also learn more about our research being presented at CVPR 2023 in the list below (Google affiliations in bold).

Board and organizing committee

Senior area chairs include: Cordelia Schmid, Ming-Hsuan Yang

Area chairs include: Andre Araujo, Anurag Arnab, Rodrigo Benenson, Ayan Chakrabarti, Huiwen Chang, Alireza Fathi, Vittorio Ferrari, Golnaz Ghiasi, Boqing Gong, Yedid Hoshen, Varun Jampani, Lu Jiang, Da-Cheng Jua, Dahun Kim, Stephen Lombardi, Peyman Milanfar, Ben Mildenhall, Arsha Nagrani, Jordi Pont-Tuset, Paul Hongsuck Seo, Fei Sha, Saurabh Singh, Noah Snavely, Kihyuk Sohn, Chen Sun, Pratul P. Srinivasan, Deqing Sun, Andrea Tagliasacchi, Federico Tombari, Jasper Uijlings

Publicity Chair: Boqing Gong

Demonstration Chair: Jonathan T. Barron

Program Advisory Board includes: Cordelia Schmid, Richard Szeliski

Panels

Best Paper Award candidates

MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, Andrea Tagliasacchi

DynIBaR: Neural Dynamic Image-Based Rendering

Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, Noah Snavely

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation

Nataniel Ruiz*, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, Kfir Aberman

On Distillation of Guided Diffusion Models

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, Tim Salimans

Highlight papers

Connecting Vision and Language with Video Localized Narratives

Paul Voigtlaender, Soravit Changpinyo, Jordi Pont-Tuset, Radu Soricut, Vittorio Ferrari

MaskSketch: Unpaired Structure-Guided Masked Image Generation

Dina Bashkirova*, Jose Lezama, Kihyuk Sohn, Kate Saenko, Irfan Essa

SPARF: Neural Radiance Fields from Sparse and Noisy Poses

Prune Truong*, Marie-Julie Rakotosaona, Fabian Manhardt, Federico Tombari

MAGVIT: Masked Generative Video Transformer

Lijun Yu*, Yong Cheng, Kihyuk Sohn, Jose Lezama, Han Zhang, Huiwen Chang, Alexander Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, Lu Jiang

Region-Aware Pretraining for Open-Vocabulary Object Detection with Vision Transformers

Dahun Kim, Anelia Angelova, Weicheng Kuo

I2MVFormer: Large Language Model Generated Multi-View Document Supervision for Zero-Shot Image Classification

Muhammad Ferjad Naeem, Gul Zain Khan, Yongqin Xian, Muhammad Zeshan Afzal, Didier Stricker, Luc Van Gool, Federico Tombari

Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization

Zifan Wang*, Nan Ding, Tomer Levinboim, Xi Chen, Radu Soricut

Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting (see blog post)

Su Wang, Chitwan Saharia, Ceslee Montgomery, Jordi Pont-Tuset, Shai Noy, Stefano Pellegrini, Yasumasa Onoe, Sarah Laszlo, David J. Fleet, Radu Soricut, Jason Baldridge, Mohammad Norouzi, Peter Anderson, William Cha

RUST: Latent Neural Scene Representations from Unposed Imagery

Mehdi S. M. Sajjadi, Aravindh Mahendran, Thomas Kipf, Etienne Pot, Daniel Duckworth, Mario Lučić, Klaus Greff

REVEAL: Retrieval-Augmented Visual-Language Pre-Training with Multi-Source Multimodal Knowledge Memory (see blog post)

Ziniu Hu*, Ahmet Iscen, Chen Sun, Zirui Wang, Kai-Wei Chang, Yizhou Sun, Cordelia Schmid, David Ross, Alireza Fathi

RobustNeRF: Ignoring Distractors with Robust Losses

Sara Sabour, Suhani Vora, Daniel Duckworth, Ivan Krasin, David J. Fleet, Andrea Tagliasacchi

Papers

AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware Training

Yifan Jiang*, Peter Hedman, Ben Mildenhall, Dejia Xu, Jonathan T. Barron, Zhangyang Wang, Tianfan Xue*

BlendFields: Few-Shot Example-Driven Facial Modeling

Kacper Kania, Stephan Garbin, Andrea Tagliasacchi, Virginia Estellers, Kwang Moo Yi, Tomasz Trzcinski, Julien Valentin, Marek Kowalski

Enhancing Deformable Local Features by Jointly Learning to Detect and Describe Keypoints

Guilherme Potje, Felipe Cadar, Andre Araujo, Renato Martins, Erickson Nascimento

How Can Objects Help Action Recognition?

Xingyi Zhou, Anurag Arnab, Chen Sun, Cordelia Schmid

Hybrid Neural Rendering for Large-Scale Scenes with Motion Blur

Peng Dai, Yinda Zhang, Xin Yu, Xiaoyang Lyu, Xiaojuan Qi

IFSeg: Image-Free Semantic Segmentation via Vision-Language Model

Sukmin Yun, Seong Park, Paul Hongsuck Seo, Jinwoo Shin

Learning from Unique Perspectives: User-Aware Saliency Modeling (see blog post)

Shi Chen*, Nachiappan Valliappan, Shaolei Shen, Xinyu Ye, Kai Kohlhoff, Junfeng He

MAGE: MAsked Generative Encoder to Unify Representation Learning and Image Synthesis

Tianhong Li*, Huiwen Chang, Shlok Kumar Mishra, Han Zhang, Dina Katabi, Dilip Krishnan

NeRF-Supervised Deep Stereo

Fabio Tosi, Alessio Tonioni, Daniele Gregorio, Matteo Poggi

Omnimatte3D: Associating Objects and their Effects in Unconstrained Monocular Video

Mohammed Suhail, Erika Lu, Zhengqi Li, Noah Snavely, Leon Sigal, Forrester Cole

OpenScene: 3D Scene Understanding with Open Vocabularies

Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas Funkhouser

PersonNeRF: Personalized Reconstruction from Photo Collections

Chung-Yi Weng, Pratul Srinivasan, Brian Curless, Ira Kemelmacher-Shlizerman

Prefix Conditioning Unifies Language and Label Supervision

Kuniaki Saito*, Kihyuk Sohn, Xiang Zhang, Chun-Liang Li, Chen-Yu Lee, Kate Saenko, Tomas Pfister

Rethinking Video ViTs: Sparse Video Tubes for Joint Image and Video Learning (see blog post)

AJ Piergiovanni, Weicheng Kuo, Anelia Angelova

Burstormer: Burst Image Restoration and Enhancement Transformer

Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan, Ming-Hsuan Yang

Decentralized Learning with Multi-Headed Distillation

Andrey Zhmoginov, Mark Sandler, Nolan Miller, Gus Kristiansen, Max Vladymyrov

GINA-3D: Learning to Generate Implicit Neural Assets in the Wild

Bokui Shen, Xinchen Yan, Charles R. Qi, Mahyar Najibi, Boyang Deng, Leonidas Guibas, Yin Zhou, Dragomir Anguelov

Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent with Learned Distance Functions

Yun He, Danhang Tang, Yinda Zhang, Xiangyang Xue, Yanwei Fu

Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from Sparse Image Ensemble

Chun-Han Yao*, Wei-Chih Hung, Yuanzhen Li, Michael Rubinstein, Ming-Hsuan Yang, Varun Jampani

Hyperbolic Contrastive Learning for Visual Representations beyond Objects

Songwei Ge, Shlok Mishra, Simon Kornblith, Chun-Liang Li, David Jacobs

Imagic: Text-Based Real Image Editing with Diffusion Models

Bahjat Kawar*, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, Michal Irani

Incremental 3D Semantic Scene Graph Prediction from RGB Sequences

Shun-Cheng Wu, Keisuke Tateno, Nassir Navab, Federico Tombari

IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint Multi-Agent Trajectory Prediction

Dekai Zhu, Guangyao Zhai, Yan Di, Fabian Manhardt, Hendrik Berkemeyer, Tuan Tran, Nassir Navab, Federico Tombari, Benjamin Busam

Learning to Generate Image Embeddings with User-Level Differential Privacy

Zheng Xu, Maxwell Collins, Yuxiao Wang, Liviu Panait, Sewoong Oh, Sean Augenstein, Ting Liu, Florian Schroff, H. Brendan McMahan

NoisyTwins: Class-Consistent and Diverse Image Generation Through StyleGANs

Harsh Rangwani, Lavish Bansal, Kartik Sharma, Tejan Karmali, Varun Jampani, Venkatesh Babu Radhakrishnan

NULL-Text Inversion for Editing Real Images Using Guided Diffusion Models

Ron Mokady*, Amir Hertz*, Kfir Aberman, Yael Pritch, Daniel Cohen-Or*

SCOOP: Self-Supervised Correspondence and Optimization-Based Scene Flow

Itai Lang*, Dror Aiger, Forrester Cole, Shai Avidan, Michael Rubinstein

Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion

Dario Pavllo*, David Joseph Tan, Marie-Julie Rakotosaona, Federico Tombari

TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose Estimation

Hanzhi Chen, Fabian Manhardt, Nassir Navab, Benjamin Busam

TryOnDiffusion: A Tale of Two UNets

Luyang Zhu*, Dawei Yang, Tyler Zhu, Fitsum Reda, William Chan, Chitwan Saharia, Mohammad Norouzi, Ira Kemelmacher-Shlizerman

A New Path: Scaling Vision-and-Language Navigation with Synthetic Instructions and Imitation Learning

Aishwarya Kamath*, Peter Anderson, Su Wang, Jing Yu Koh*, Alexander Ku, Austin Waters, Yinfei Yang*, Jason Baldridge, Zarana Parekh

CLIPPO: Image-and-Language Understanding from Pixels Only

Michael Tschannen, Basil Mustafa, Neil Houlsby

Controllable Light Diffusion for Portraits

David Futschik, Kelvin Ritland, James Vecore, Sean Fanello, Sergio Orts-Escolano, Brian Curless, Daniel Sýkora, Rohit Pandey

CUF: Continuous Upsampling Filters

Cristina Vasconcelos, Cengiz Oztireli, Mark Matthews, Milad Hashemi, Kevin Swersky, Andrea Tagliasacchi

Improving Zero-Shot Generalization and Robustness of Multi-modal Models

Yunhao Ge*, Jie Ren, Andrew Gallagher, Yuxiao Wang, Ming-Hsuan Yang, Hartwig Adam, Laurent Itti, Balaji Lakshminarayanan, Jiaping Zhao

LOCATE: Localize and Transfer Object Parts for Weakly Supervised Affordance Grounding

Gen Li, Varun Jampani, Deqing Sun, Laura Sevilla-Lara

Nerflets: Local Radiance Fields for Efficient Structure-Aware 3D Scene Representation from 2D Supervision

Xiaoshuai Zhang, Abhijit Kundu, Thomas Funkhouser, Leonidas Guibas, Hao Su, Kyle Genova

Self-Supervised AutoFlow

Hsin-Ping Huang, Charles Herrmann, Junhwa Hur, Erika Lu, Kyle Sargent, Austin Stone, Ming-Hsuan Yang, Deqing Sun

Train-Once-for-All Personalization

Hong-You Chen*, Yandong Li, Yin Cui, Mingda Zhang, Wei-Lun Chao, Li Zhang

Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video Captioning (see blog post)

Antoine Yang*, Arsha Nagrani, Paul Hongsuck Seo, Antoine Miech, Jordi Pont-Tuset, Ivan Laptev, Josef Sivic, Cordelia Schmid

VILA: Learning Image Aesthetics from User Comments with Vision-Language Pretraining

Junjie Ke, Keren Ye, Jiahui Yu, Yonghui Wu, Peyman Milanfar, Feng Yang

You Need Multiple Exiting: Dynamic Early Exiting for Accelerating Unified Vision Language Model

Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang, Yi Liang, Dongkuan Xu

Accidental Light Probes

Hong-Xing Yu, Samir Agarwala, Charles Herrmann, Richard Szeliski, Noah Snavely, Jiajun Wu, Deqing Sun

FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning

Yuanhao Xiong, Ruochen Wang, Minhao Cheng, Felix Yu, Cho-Jui Hsieh

FlexiViT: One Model for All Patch Sizes

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, Filip Pavetic

Iterative Vision-and-Language Navigation

Jacob Krantz, Shurjo Banerjee, Wang Zhu, Jason Corso, Peter Anderson, Stefan Lee, Jesse Thomason

MoDi: Unconditional Motion Synthesis from Diverse Data

Sigal Raab, Inbal Leibovitch, Peizhuo Li, Kfir Aberman, Olga Sorkine-Hornung, Daniel Cohen-Or

Multimodal Prompting with Missing Modalities for Visual Recognition

Yi-Lun Lee, Yi-Hsuan Tsai, Wei-Chen Chiu, Chen-Yu Lee

Scene-Aware Egocentric 3D Human Pose Estimation

Jian Wang, Diogo Luvizon, Weipeng Xu, Lingjie Liu, Kripasindhu Sarkar, Christian Theobalt

ShapeClipper: Scalable 3D Shape Learning from Single-View Images via Geometric and CLIP-Based Consistency

Zixuan Huang, Varun Jampani, Ngoc Anh Thai, Yuanzhen Li, Stefan Stojanov, James M. Rehg

Improving Image Recognition by Retrieving from Web-Scale Image-Text Data

Ahmet Iscen, Alireza Fathi, Cordelia Schmid

JacobiNeRF: NeRF Shaping with Mutual Information Gradients

Xiaomeng Xu, Yanchao Yang, Kaichun Mo, Boxiao Pan, Li Yi, Leonidas Guibas

Learning Personalized High Quality Volumetric Head Avatars from Monocular RGB Videos

Ziqian Bai*, Feitong Tan, Zeng Huang, Kripasindhu Sarkar, Danhang Tang, Di Qiu, Abhimitra Meka, Ruofei Du, Mingsong Dou, Sergio Orts-Escolano, Rohit Pandey, Ping Tan, Thabo Beeler, Sean Fanello, Yinda Zhang

NeRF in the Palm of Your Hand: Corrective Augmentation for Robotics via Novel-View Synthesis

Allan Zhou, Mo Jin Kim, Lirui Wang, Pete Florence, Chelsea Finn

Pic2Word: Mapping Pictures to Words for Zero-Shot Composed Image Retrieval

Kuniaki Saito*, Kihyuk Sohn, Xiang Zhang, Chun-Liang Li, Chen-Yu Lee, Kate Saenko, Tomas Pfister

SCADE: NeRFs from Space Carving with Ambiguity-Aware Depth Estimates

Mikaela Uy, Ricardo Martin Brualla, Leonidas Guibas, Ke Li

Structured 3D Features for Reconstructing Controllable Avatars

Enric Corona, Mihai Zanfir, Thiemo Alldieck, Eduard Gabriel Bazavan, Andrei Zanfir, Cristian Sminchisescu

Token Turing Machines

Michael S. Ryoo, Keerthana Gopalakrishnan, Kumara Kahatapitiya, Ted Xiao, Kanishka Rao, Austin Stone, Yao Lu, Julian Ibarz, Anurag Arnab

TruFor: Leveraging All-Round Clues for Trustworthy Image Forgery Detection and Localization

Fabrizio Guillaro, Davide Cozzolino, Avneesh Sud, Nicholas Dufour, Luisa Verdoliva

Video Probabilistic Diffusion Models in Projected Latent Space

Sihyun Yu, Kihyuk Sohn, Subin Kim, Jinwoo Shin

Visual Prompt Tuning for Generative Transfer Learning

Kihyuk Sohn, Yuan Hao, Jose Lezama, Luisa Polania, Huiwen Chang, Han Zhang, Irfan Essa, Lu Jiang

Zero-Shot Referring Image Segmentation with Global-Local Context Features

Seonghoon Yu, Paul Hongsuck Seo, Jeany Son

AVFormer: Injecting Vision into Frozen Speech Models for Zero-Shot AV-ASR (see blog post)

Paul Hongsuck Seo, Arsha Nagrani, Cordelia Schmid

DC2: Dual-Camera Defocus Control by Learning to Refocus

Hadi Alzayer, Abdullah Abuolaim, Leung Chun Chan, Yang Yang, Ying Chen Lou, Jia-Bin Huang, Abhishek Kar

Edges to Shapes to Concepts: Adversarial Augmentation for Robust Vision

Aditay Tripathi*, Rishubh Singh, Anirban Chakraborty, Pradeep Shenoy

MetaCLUE: Towards Comprehensive Visual Metaphors Research

Arjun R. Akula, Brendan Driscoll, Pradyumna Narayana, Soravit Changpinyo, Zhiwei Jia, Suyash Damle, Garima Pruthi, Sugato Basu, Leonidas Guibas, William T. Freeman, Yuanzhen Li, Varun Jampani

Multi-Realism Image Compression with a Conditional Generator

Eirikur Agustsson, David Minnen, George Toderici, Fabian Mentzer

NeRDi: Single-View NeRF Synthesis with Language-Guided Diffusion as General Image Priors

Congyue Deng, Chiyu Jiang, Charles R. Qi, Xinchen Yan, Yin Zhou, Leonidas Guibas, Dragomir Anguelov

On Calibrating Semantic Segmentation Models: Analyses and an Algorithm

Dongdong Wang, Boqing Gong, Liqiang Wang

Persistent Nature: A Generative Model of Unbounded 3D Worlds

Lucy Chai, Richard Tucker, Zhengqi Li, Phillip Isola, Noah Snavely

Rethinking Domain Generalization for Face Anti-spoofing: Separability and Alignment

Yiyou Sun*, Yaojie Liu, Xiaoming Liu, Yixuan Li, Wen-Sheng Chu

SINE: Semantic-Driven Image-Based NeRF Editing with Prior-Guided Editing Field

Chong Bao, Yinda Zhang, Bangbang Yang, Tianxing Fan, Zesong Yang, Hujun Bao, Guofeng Zhang, Zhaopeng Cui

Sequential Training of GANs Against GAN-Classifiers Reveals Correlated “Knowledge Gaps” Present Among Independently Trained GAN Instances

Arkanath Pathak, Nicholas Dufour

SparsePose: Sparse-View Camera Pose Regression and Refinement

Samarth Sinha, Jason Zhang, Andrea Tagliasacchi, Igor Gilitschenski, David Lindell

Teacher-Generated Spatial-Attention Labels Boost Robustness and Accuracy of Contrastive Models

Yushi Yao, Chang Ye, Gamaleldin F. Elsayed, Junfeng He

Workshops

Computer Vision for Mixed Reality

Speakers include: Ira Kemelmacher-Shlizerman

Workshop on Autonomous Driving (WAD)

Speakers include: Chelsea Finn

Multimodal Content Moderation (MMCM)

Organizers include: Chris Bregler

Speakers include: Mevan Babakar

Medical Computer Vision (MCV)

Speakers include: Shekoofeh Azizi

VAND: Visual Anomaly and Novelty Detection

Speakers include: Yedid Hoshen, Jie Ren

Structural and Compositional Learning on 3D Data

Organizers include: Leonidas Guibas

Speakers include: Andrea Tagliasacchi, Fei Xia, Amir Hertz

Fine-Grained Visual Categorization (FGVC10)

Organizers include: Kimberly Wilber, Sara Beery

Panelists include: Hartwig Adam

XRNeRF: Advances in NeRF for the Metaverse

Organizers include: Jonathan T. Barron

Speakers include: Ben Poole

OmniLabel: Infinite Label Spaces for Semantic Understanding via Natural Language

Organizers include: Golnaz Ghiasi, Long Zhao

Speakers include: Vittorio Ferrari

Large Scale Holistic Video Understanding

Organizers include: David Ross

Speakers include: Cordelia Schmid

New Frontiers for Zero-Shot Image Captioning Evaluation (NICE)

Speakers include: Cordelia Schmid

Computational Cameras and Displays (CCD)

Organizers include: Ulugbek Kamilov

Speakers include: Mauricio Delbracio

Gaze Estimation and Prediction in the Wild (GAZE)

Organizers include: Thabo Beele


Speakers include: Erroll Wood

Face and Gesture Analysis for Health Informatics (FGAHI)

Speakers include: Daniel McDuff

Computer Vision for Animal Behavior Tracking and Modeling (CV4Animals)

Organizers include: Sara Beery

Speakers include: Arsha Nagrani

3D Vision and Robotics

Speakers include: Pete Florence

End-to-End Autonomous Driving: Perception, Prediction, Planning and Simulation (E2EAD)

Organizers include: Anurag Arnab

End-to-End Autonomous Driving: Emerging Tasks and Challenges

Speakers include: Sergey Levine

Multi-Modal Learning and Applications (MULA)

Speakers include: Aleksander Hołyński

Synthetic Data for Autonomous Systems (SDAS)

Speakers include: Lukas Hoyer

Vision Datasets Understanding

Organizers include: José Lezama

Speakers include: Vijay Janapa Reddi

Precognition: Seeing Through the Future

Organizers include: Utsav Prabhu

New Trends in Image Restoration and Enhancement (NTIRE)

Organizers include: Ming-Hsuan Yang

Generative Models for Computer Vision

Speakers include: Ben Mildenhall, Andrea Tagliasacchi

Adversarial Machine Learning on Computer Vision: Art of Robustness

Organizers include: Xinyun Chen

Speakers include: Deqing Sun

Media Forensics

Speakers include: Nicholas Carlini

Tracking and Its Many Guises: Tracking Any Object in Open-World

Organizers include: Paul Voigtlaender

3D Scene Understanding for Vision, Graphics, and Robotics

Speakers include: Andy Zeng

Computer Vision for Physiological Measurement (CVPM)

Organizers include: Daniel McDuff

Affective Behaviour Analysis In-the-Wild

Organizers include: Stefanos Zafeiriou

Ethical Considerations in Creative Applications of Computer Vision (EC3V)

Organizers include: Rida Qadri, Mohammad Havaei, Fernando Diaz, Emily Denton, Sarah Laszlo, Negar Rostamzadeh, Pamela Peter-Agbia, Eva Kozanecka

VizWiz Grand Challenge: Describing Images and Videos Taken by Blind People

Speakers include: Haoran Qi

Efficient Deep Learning for Computer Vision (see blog post)

Organizers include: Andrew Howard, Chas Leichner


Speakers include: Andrew Howard

Visual Copy Detection

Organizers include: Priya Goyal

Learning 3D with Multi-View Supervision (3DMV)

Speakers include: Ben Poole

Image Matching: Local Features and Beyond

Organizers include: Eduard Trulls

Vision for All Seasons: Adverse Weather and Lightning Conditions (V4AS)

Organizers include: Lukas Hoyer

Transformers for Vision (T4V)

Speakers include: Cordelia Schmid, Huiwen Chang

Scholars vs Big Models — How Can Academics Adapt?

Organizers include: Sara Beery

Speakers include: Jonathan T. Barron, Cordelia Schmid

ScanNet Indoor Scene Understanding Challenge

Speakers include: Tom Funkhouser

Computer Vision for Microscopy Image Analysis

Speakers include: Po-Hsuan Cameron Chen

Embedded Vision

Speakers include: Rahul Sukthankar

Sight and Sound

Organizers include: Arsha Nagrani, William Freeman

AI for Content Creation

Organizers include: Deqing Sun, Huiwen Chang, Lu Jiang

Speakers include: Ben Mildenhall, Tim Salimans, Yuanzhen Li

Computer Vision in the Wild

Organizers include: Xiuye Gu, Neil Houlsby

Speakers include: Boqing Gong, Anelia Angelova

Visual Pre-Training for Robotics

Organizers include: Mathilde Caron

Omnidirectional Computer Vision

Organizers include: Yi-Hsuan Tsai

Tutorials

All Things ViTs: Understanding and Interpreting Attention in Vision

Hila Chefer, Sayak Paul

Recent Advances in Anomaly Detection

Guansong Pang, Joey Tianyi Zhou, Radu Tudor Ionescu, Yu Tian, Kihyuk Sohn

Contactless Healthcare Using Cameras and Wireless Sensors

Wenjin Wang, Xuyu Wang, Jun Luo, Daniel McDuff

Object Localization for Free: Going Beyond Self-Supervised Learning

Oriane Simeoni, Weidi Xie, Thomas Kipf, Patrick Pérez

Prompting in Vision

Kaiyang Zhou, Ziwei Liu, Phillip Isola, Hyojin Bahng, Ludwig Schmidt, Sarah Pratt, Denny Zhou


* Work done while at Google

Read More

Speed is all you need: On-device acceleration of large diffusion models via GPU-aware optimizations

Speed is all you need: On-device acceleration of large diffusion models via GPU-aware optimizations

The proliferation of large diffusion models for image generation has led to a significant increase in model size and inference workloads. On-device ML inference in mobile environments requires meticulous performance optimization and consideration of trade-offs due to resource constraints. Running inference of large diffusion models (LDMs) on-device, driven by the need for cost efficiency and user privacy, presents even greater challenges due to the substantial memory requirements and computational demands of these models.

We address this challenge in our work titled “Speed Is All You Need: On-Device Acceleration of Large Diffusion Models via GPU-Aware Optimizations” (to be presented at the CVPR 2023 workshop for Efficient Deep Learning for Computer Vision) focusing on the optimized execution of a foundational LDM model on a mobile GPU. In this blog post, we summarize the core techniques we employed to successfully execute large diffusion models like Stable Diffusion at full resolution (512×512 pixels) and 20 iterations on modern smartphones with high-performing inference speed of the original model without distillation of under 12 seconds. As discussed in our previous blog post, GPU-accelerated ML inference is often limited by memory performance, and execution of LDMs is no exception. Therefore, the central theme of our optimization is efficient memory input/output (I/O) even if it means choosing memory-efficient algorithms over those that prioritize arithmetic logic unit efficiency. Ultimately, our primary objective is to reduce the overall latency of the ML inference.

A sample output of an LDM on Mobile GPU with the prompt text: “a photo realistic and high resolution image of a cute puppy with surrounding flowers”.

Enhanced attention module for memory efficiency

An ML inference engine typically provides a variety of optimized ML operations. Despite this, achieving optimal performance can still be challenging as there is a certain amount of overhead for executing individual neural net operators on a GPU. To mitigate this overhead, ML inference engines incorporate extensive operator fusion rules that consolidate multiple operators into a single operator, thereby reducing the number of iterations across tensor elements while maximizing compute per iteration. For instance, TensorFlow Lite utilizes operator fusion to combine computationally expensive operations, like convolutions, with subsequent activation functions, like rectified linear units, into one.

A clear opportunity for optimization is the heavily used attention block adopted in the denoiser model in the LDM. The attention blocks allow the model to focus on specific parts of the input by assigning higher weights to important regions. There are multiple ways one can optimize the attention modules, and we selectively employ one of the two optimizations explained below depending on which optimization performs better.

The first optimization, which we call partially fused softmax, removes the need for extensive memory writes and reads between the softmax and the matrix multiplication in the attention module. Let the attention block be just a simple matrix multiplication of the form Y = softmax(X) * W where X and W are 2D matrices of shape a×b and b×c, respectively (shown below in the top half).

For numerical stability, T = softmax(X) is typically calculated in three passes:

  1. Determine the maximum value in the list, i.e., for each row in matrix X
  2. Sum up the differences of the exponential of each list item and the maximum value (from pass 1)
  3. Divide the exponential of the items minus the maximum value by the sum from pass 2

Carrying out these passes naïvely would result in a huge memory write for the temporary intermediate tensor T holding the output of the entire softmax function. We bypass this large memory write if we only store the results of passes 1 and 2, labeled m and s, respectively, which are small vectors, with a elements each, compared to T which has a·b elements. With this technique, we are able to reduce tens or even hundreds of megabytes of memory consumption by multiple orders of magnitude (shown below in the bottom half).

Attention modules. Top: A naïve attention block, composed of a SOFTMAX (with all three passes) and a MATMUL, requires a large memory write for the big intermediate tensor T. Bottom: Our memory-efficient attention block with partially fused softmax in MATMUL only needs to store two small intermediate tensors for m and s.

The other optimization involves employing FlashAttention, which is an I/O-aware, exact attention algorithm. This algorithm reduces the number of GPU high-bandwidth memory accesses, making it a good fit for our memory bandwidth–limited use case. However, we found this technique to only work for SRAM with certain sizes and to require a large number of registers. Therefore, we only leverage this technique for attention matrices with a certain size on a select set of GPUs.

Winograd fast convolution for 3×3 convolution layers

The backbone of common LDMs heavily relies on 3×3 convolution layers (convolutions with filter size 3×3), comprising over 90% of the layers in the decoder. Despite increased memory consumption and numerical errors, we found that Winograd fast convolution to be effective at speeding up the convolutions. Distinct from the filter size 3×3 used in convolutions, tile size refers to the size of a sub region of the input tensor that is processed at a time. Increasing the tile size enhances the efficiency of the convolution in terms of arithmetic logic unit (ALU) usage. However, this improvement comes at the expense of increased memory consumption. Our tests indicate that a tile size of 4×4 achieves the optimal trade-off between computational efficiency and memory utilization.

    Memory usage    
    Tile size         FLOPS savings         Intermediate tensors         Weights    
2×2 2.25× 4.00× 1.77×
4×4 4.00× 2.25× 4.00×
6×6 5.06× 1.80× 7.12×
8×8 5.76× 1.56× 11.1×

Impact of Winograd with varying tile sizes for 3×3 convolutions.

Specialized operator fusion for memory efficiency

We discovered that performantly inferring LDMs on a mobile GPU requires significantly larger fusion windows for commonly employed layers and units in LDMs than current off-the-shelf on-device GPU-accelerated ML inference engines provide. Consequently, we developed specialized implementations that could execute a larger range of neural operators than typical fusion rules would permit. Specifically, we focused on two specializations: the Gaussian Error Linear Unit (GELU) and the group normalization layer.

An approximation of GELU with the hyperbolic tangent function requires writing to and reading from seven auxiliary intermediate tensors (shown below as light orange rounded rectangles in the figure below), reading from the input tensor x three times, and writing to the output tensor y once across eight GPU programs implementing the labeled operation each (light blue rectangles). A custom GELU implementation that performs the eight operations in a single shader (shown below in the bottom) can bypass all the memory I/O for the intermediate tensors.

GELU implementations. Top: A naïve implementation with built-in operations would require 8 memory writes and 10 reads. Bottom: Our custom GELU only requires 1 memory read (for x) and 1 write (for y).

Results

After applying all of these optimizations, we conducted tests of Stable Diffusion 1.5 (image resolution 512×512, 20 iterations) on high-end mobile devices. Running Stable Diffusion with our GPU-accelerated ML inference model uses 2,093MB for the weights and 84MB for the intermediate tensors. With latest high-end smartphones, Stable Diffusion can be run in under 12 seconds.

Stable Diffusion runs on modern smartphones in under 12 seconds. Note that running the decoder after each iteration for displaying the intermediate output in this animated GIF results in a ~2× slowdown.

Conclusion

Performing on-device ML inference of large models has proven to be a substantial challenge, encompassing limitations in model file size, extensive runtime memory requirements, and protracted inference latency. By recognizing memory bandwidth usage as the primary bottleneck, we directed our efforts towards optimizing memory bandwidth utilization and striking a delicate balance between ALU efficiency and memory efficiency. As a result, we achieved state-of-the-art inference latency for large diffusion models. You can learn more about this work in the paper.

Acknowledgments

We’d like to thank Yu-Hui Chen, Jiuqiang Tang, Frank Barchard, Yang Zhao, Joe Zou, Khanh LeViet, Chuo-Ling Chang, Andrei Kulik, Lu Wang, and Matthias Grundmann.

Read More

Reconstructing indoor spaces with NeRF

Reconstructing indoor spaces with NeRF

When choosing a venue, we often find ourselves with questions like the following: Does this restaurant have the right vibe for a date? Is there good outdoor seating? Are there enough screens to watch the game? While photos and videos may partially answer questions like these, they are no substitute for feeling like you’re there, even when visiting in person isn’t an option.

Immersive experiences that are interactive, photorealistic, and multi-dimensional stand to bridge this gap and recreate the feel and vibe of a space, empowering users to naturally and intuitively find the information they need. To help with this, Google Maps launched Immersive View, which uses advances in machine learning (ML) and computer vision to fuse billions of Street View and aerial images to create a rich, digital model of the world. Beyond that, it layers helpful information on top, like the weather, traffic, and how busy a place is. Immersive View provides indoor views of restaurants, cafes, and other venues to give users a virtual up-close look that can help them confidently decide where to go.

Today we describe the work put into delivering these indoor views in Immersive View. We build on neural radiance fields (NeRF), a state-of-the-art approach for fusing photos to produce a realistic, multi-dimensional reconstruction within a neural network. We describe our pipeline for creation of NeRFs, which includes custom photo capture of the space using DSLR cameras, image processing and scene reproduction. We take advantage of Alphabet’s recent advances in the field to design a method matching or outperforming the prior state-of-the-art in visual fidelity. These models are then embedded as interactive 360° videos following curated flight paths, enabling them to be available on smartphones.

The reconstruction of The Seafood Bar in Amsterdam in Immersive View.

From photos to NeRFs

At the core of our work is NeRF, a recently-developed method for 3D reconstruction and novel view synthesis. Given a collection of photos describing a scene, NeRF distills these photos into a neural field, which can then be used to render photos from viewpoints not present in the original collection.

While NeRF largely solves the challenge of reconstruction, a user-facing product based on real-world data brings a wide variety of challenges to the table. For example, reconstruction quality and user experience should remain consistent across venues, from dimly-lit bars to sidewalk cafes to hotel restaurants. At the same time, privacy should be respected and any potentially personally identifiable information should be removed. Importantly, scenes should be captured consistently and efficiently, reliably resulting in high-quality reconstructions while minimizing the effort needed to capture the necessary photographs. Finally, the same natural experience should be available to all mobile users, regardless of the device on hand.

The Immersive View indoor reconstruction pipeline.

Capture & preprocessing

The first step to producing a high-quality NeRF is the careful capture of a scene: a dense collection of photos from which 3D geometry and color can be derived. To obtain the best possible reconstruction quality, every surface should be observed from multiple different directions. The more information a model has about an object’s surface, the better it will be in discovering the object’s shape and the way it interacts with lights.

In addition, NeRF models place further assumptions on the camera and the scene itself. For example, most of the camera’s properties, such as white balance and aperture, are assumed to be fixed throughout the capture. Likewise, the scene itself is assumed to be frozen in time: lighting changes and movement should be avoided. This must be balanced with practical concerns, including the time needed for the capture, available lighting, equipment weight, and privacy. In partnership with professional photographers, we developed a strategy for quickly and reliably capturing venue photos using DSLR cameras within only an hour timeframe. This approach has been used for all of our NeRF reconstructions to date.

Once the capture is uploaded to our system, processing begins. As photos may inadvertently contain sensitive information, we automatically scan and blur personally identifiable content. We then apply a structure-from-motion pipeline to solve for each photo’s camera parameters: its position and orientation relative to other photos, along with lens properties like focal length. These parameters associate each pixel with a point and a direction in 3D space and constitute a key signal in the NeRF reconstruction process.

NeRF reconstruction

Unlike many ML models, a new NeRF model is trained from scratch on each captured location. To obtain the best possible reconstruction quality within a target compute budget, we incorporate features from a variety of published works on NeRF developed at Alphabet. Some of these include:

  • We build on mip-NeRF 360, one of the best-performing NeRF models to date. While more computationally intensive than Nvidia’s widely-used Instant NGP, we find the mip-NeRF 360 consistently produces fewer artifacts and higher reconstruction quality.
  • We incorporate the low-dimensional generative latent optimization (GLO) vectors introduced in NeRF in the Wild as an auxiliary input to the model’s radiance network. These are learned real-valued latent vectors that embed appearance information for each image. By assigning each image in its own latent vector, the model can capture phenomena such as lighting changes without resorting to cloudy geometry, a common artifact in casual NeRF captures.
  • We also incorporate exposure conditioning as introduced in Block-NeRF. Unlike GLO vectors, which are uninterpretable model parameters, exposure is directly derived from a photo’s metadata and fed as an additional input to the model’s radiance network. This offers two major benefits: it opens up the possibility of varying ISO and provides a method for controlling an image’s brightness at inference time. We find both properties invaluable for capturing and reconstructing dimly-lit venues.

We train each NeRF model on TPU or GPU accelerators, which provide different trade-off points. As with all Google products, we continue to search for new ways to improve, from reducing compute requirements to improving reconstruction quality.

A side-by-side comparison of our method and a mip-NeRF 360 baseline.

A scalable user experience

Once a NeRF is trained, we have the ability to produce new photos of a scene from any viewpoint and camera lens we choose. Our goal is to deliver a meaningful and helpful user experience: not only the reconstructions themselves, but guided, interactive tours that give users the freedom to naturally explore spaces from the comfort of their smartphones.

To this end, we designed a controllable 360° video player that emulates flying through an indoor space along a predefined path, allowing the user to freely look around and travel forward or backwards. As the first Google product exploring this new technology, 360° videos were chosen as the format to deliver the generated content for a few reasons.

On the technical side, real-time inference and baked representations are still resource intensive on a per-client basis (either on device or cloud computed), and relying on them would limit the number of users able to access this experience. By using videos, we are able to scale the storage and delivery of videos to all users by taking advantage of the same video management and serving infrastructure used by YouTube. On the operations side, videos give us clearer editorial control over the exploration experience and are easier to inspect for quality in large volumes.

While we had considered capturing the space with a 360° camera directly, using a NeRF to reconstruct and render the space has several advantages. A virtual camera can fly anywhere in space, including over obstacles and through windows, and can use any desired camera lens. The camera path can also be edited post-hoc for smoothness and speed, unlike a live recording. A NeRF capture also does not require the use of specialized camera hardware.

Our 360° videos are rendered by ray casting through each pixel of a virtual, spherical camera and compositing the visible elements of the scene. Each video follows a smooth path defined by a sequence of keyframe photos taken by the photographer during capture. The position of the camera for each picture is computed during structure-from-motion, and the sequence of pictures is smoothly interpolated into a flight path.

To keep speed consistent across different venues, we calibrate the distances for each by capturing pairs of images, each of which is 3 meters apart. By knowing measurements in the space, we scale the generated model, and render all videos at a natural velocity.

The final experience is surfaced to the user within Immersive View: the user can seamlessly fly into restaurants and other indoor venues and discover the space by flying through the photorealistic 360° videos.

Open research questions

We believe that this feature is the first step of many in a journey towards universally accessible, AI-powered, immersive experiences. From a NeRF research perspective, more questions remain open. Some of these include:

  1. Enhancing reconstructions with scene segmentation, adding semantic information to the scenes that could make scenes, for example, searchable and easier to navigate.
  2. Adapting NeRF to outdoor photo collections, in addition to indoor. In doing so, we’d unlock similar experiences to every corner of the world and change how users could experience the outdoor world.
  3. Enabling real-time, interactive 3D exploration through neural-rendering on-device.

Reconstruction of an outdoor scene with a NeRF model trained on Street View panoramas.

As we continue to grow, we look forward to engaging with and contributing to the community to build the next generation of immersive experiences.

Acknowledgments

This work is a collaboration across multiple teams at Google. Contributors to the project include Jon Barron, Julius Beres, Daniel Duckworth, Roman Dudko, Magdalena Filak, Mike Harm, Peter Hedman, Claudio Martella, Ben Mildenhall, Cardin Moffett, Etienne Pot, Konstantinos Rematas, Yves Sallat, Marcos Seefelder, Lilyana Sirakovat, Sven Tresp and Peter Zhizhin.

Also, we’d like to extend our thanks to Luke Barrington, Daniel Filip, Tom Funkhouser, Charles Goran, Pramod Gupta, Mario Lučić, Isalo Montacute and Dan Thomasset for valuable feedback and suggestions.

Read More

Enabling delightful user experiences via predictive models of human attention

Enabling delightful user experiences via predictive models of human attention

People have the remarkable ability to take in a tremendous amount of information (estimated to be ~1010 bits/s entering the retina) and selectively attend to a few task-relevant and interesting regions for further processing (e.g., memory, comprehension, action). Modeling human attention (the result of which is often called a saliency model) has therefore been of interest across the fields of neuroscience, psychology, human-computer interaction (HCI) and computer vision. The ability to predict which regions are likely to attract attention has numerous important applications in areas like graphics, photography, image compression and processing, and the measurement of visual quality.

We’ve previously discussed the possibility of accelerating eye movement research using machine learning and smartphone-based gaze estimation, which earlier required specialized hardware costing up to $30,000 per unit. Related research includes “Look to Speak”, which helps users with accessibility needs (e.g., people with ALS) to communicate with their eyes, and the recently published “Differentially private heatmaps” technique to compute heatmaps, like those for attention, while protecting users’ privacy.

In this blog, we present two papers (one from CVPR 2022, and one just accepted to CVPR 2023) that highlight our recent research in the area of human attention modeling: “Deep Saliency Prior for Reducing Visual Distraction” and “Learning from Unique Perspectives: User-aware Saliency Modeling”, together with recent research on saliency driven progressive loading for image compression (1, 2). We showcase how predictive models of human attention can enable delightful user experiences such as image editing to minimize visual clutter, distraction or artifacts, image compression for faster loading of webpages or apps, and guiding ML models towards more intuitive human-like interpretation and model performance. We focus on image editing and image compression, and discuss recent advances in modeling in the context of these applications.

Attention-guided image editing

Human attention models usually take an image as input (e.g., a natural image or a screenshot of a webpage), and predict a heatmap as output. The predicted heatmap on the image is evaluated against ground-truth attention data, which are typically collected by an eye tracker or approximated via mouse hovering/clicking. Previous models leveraged handcrafted features for visual clues, like color/brightness contrast, edges, and shape, while more recent approaches automatically learn discriminative features based on deep neural networks, from convolutional and recurrent neural networks to more recent vision transformer networks.

In “Deep Saliency Prior for Reducing Visual Distraction” (more information on this project site), we leverage deep saliency models for dramatic yet visually realistic edits, which can significantly change an observer’s attention to different image regions. For example, removing distracting objects in the background can reduce clutter in photos, leading to increased user satisfaction. Similarly, in video conferencing, reducing clutter in the background may increase focus on the main speaker (example demo here).

To explore what types of editing effects can be achieved and how these affect viewers’ attention, we developed an optimization framework for guiding visual attention in images using a differentiable, predictive saliency model. Our method employs a state-of-the-art deep saliency model. Given an input image and a binary mask representing the distractor regions, pixels within the mask will be edited under the guidance of the predictive saliency model such that the saliency within the masked region is reduced. To make sure the edited image is natural and realistic, we carefully choose four image editing operators: two standard image editing operations, namely recolorization and image warping (shift); and two learned operators (we do not define the editing operation explicitly), namely a multi-layer convolution filter, and a generative model (GAN).

With those operators, our framework can produce a variety of powerful effects, with examples in the figure below, including recoloring, inpainting, camouflage, object editing or insertion, and facial attribute editing. Importantly, all these effects are driven solely by the single, pre-trained saliency model, without any additional supervision or training. Note that our goal is not to compete with dedicated methods for producing each effect, but rather to demonstrate how multiple editing operations can be guided by the knowledge embedded within deep saliency models.

Examples of reducing visual distractions, guided by the saliency model with several operators. The distractor region is marked on top of the saliency map (red border) in each example.

Enriching experiences with user-aware saliency modeling

Prior research assumes a single saliency model for the whole population. However, human attention varies between individuals — while the detection of salient clues is fairly consistent, their order, interpretation, and gaze distributions can differ substantially. This offers opportunities to create personalized user experiences for individuals or groups. In “Learning from Unique Perspectives: User-aware Saliency Modeling”, we introduce a user-aware saliency model, the first that can predict attention for one user, a group of users, and the general population, with a single model.

As shown in the figure below, core to the model is the combination of each participant’s visual preferences with a per-user attention map and adaptive user masks. This requires per-user attention annotations to be available in the training data, e.g., the OSIE mobile gaze dataset for natural images; FiWI and WebSaliency datasets for web pages. Instead of predicting a single saliency map representing attention of all users, this model predicts per-user attention maps to encode individuals’ attention patterns. Further, the model adopts a user mask (a binary vector with the size equal to the number of participants) to indicate the presence of participants in the current sample, which makes it possible to select a group of participants and combine their preferences into a single heatmap.

An overview of the user aware saliency model framework. The example image is from OSIE image set.

During inference, the user mask allows making predictions for any combination of participants. In the following figure, the first two rows are attention predictions for two different groups of participants (with three people in each group) on an image. A conventional attention prediction model will predict identical attention heatmaps. Our model can distinguish the two groups (e.g., the second group pays less attention to the face and more attention to the food than the first). Similarly, the last two rows are predictions on a webpage for two distinctive participants, with our model showing different preferences (e.g., the second participant pays more attention to the left region than the first).

Predicted attention vs. ground truth (GT). EML-Net: predictions from a state-of-the-art model, which will have the same predictions for the two participants/groups. Ours: predictions from our proposed user aware saliency model, which can predict the unique preference of each participant/group correctly. The first image is from OSIE image set, and the second is from FiWI.

Progressive image decoding centered on salient features

Besides image editing, human attention models can also improve users’ browsing experience. One of the most frustrating and annoying user experiences while browsing is waiting for web pages with images to load, especially in conditions with low network connectivity. One way to improve the user experience in such cases is with progressive decoding of images, which decodes and displays increasingly higher-resolution image sections as data are downloaded, until the full-resolution image is ready. Progressive decoding usually proceeds in a sequential order (e.g., left to right, top to bottom). With a predictive attention model (1, 2), we can instead decode images based on saliency, making it possible to send the data necessary to display details of the most salient regions first. For example, in a portrait, bytes for the face can be prioritized over those for the out-of-focus background. Consequently, users perceive better image quality earlier and experience significantly reduced wait times. More details can be found in our open source blog posts (post 1, post 2). Thus, predictive attention models can help with image compression and faster loading of web pages with images, improve rendering for large images and streaming/VR applications.

Conclusion

We’ve shown how predictive models of human attention can enable delightful user experiences via applications such as image editing that can reduce clutter, distractions or artifacts in images or photos for users, and progressive image decoding that can greatly reduce the perceived waiting time for users while images are fully rendered. Our user-aware saliency model can further personalize the above applications for individual users or groups, enabling richer and more unique experiences.

Another interesting direction for predictive attention models is whether they can help improve robustness of computer vision models in tasks such as object classification or detection. For example, in “Teacher-generated spatial-attention labels boost robustness and accuracy of contrastive models”, we show that a predictive human attention model can guide contrastive learning models to achieve better representation and improve the accuracy/robustness of classification tasks (on the ImageNet and ImageNet-C datasets). Further research in this direction could enable applications such as using radiologist’s attention on medical images to improve health screening or diagnosis, or using human attention in complex driving scenarios to guide autonomous driving systems.

Acknowledgements

This work involved collaborative efforts from a multidisciplinary team of software engineers, researchers, and cross-functional contributors. We’d like to thank all the co-authors of the papers/research, including Kfir Aberman, Gamaleldin F. Elsayed, Moritz Firsching, Shi Chen, Nachiappan Valliappan, Yushi Yao, Chang Ye, Yossi Gandelsman, Inbar Mosseri, David E. Jacobes, Yael Pritch, Shaolei Shen, and Xinyu Ye. We also want to thank team members Oscar Ramirez, Venky Ramachandran and Tim Fujita for their help. Finally, we thank Vidhya Navalpakkam for her technical leadership in initiating and overseeing this body of work.

Read More

Imagen Editor and EditBench: Advancing and evaluating text-guided image inpainting

Imagen Editor and EditBench: Advancing and evaluating text-guided image inpainting

In the last few years, text-to-image generation research has seen an explosion of breakthroughs (notably, Imagen, Parti, DALL-E 2, etc.) that have naturally permeated into related topics. In particular, text-guided image editing (TGIE) is a practical task that involves editing generated and photographed visuals rather than completely redoing them. Quick, automated, and controllable editing is a convenient solution when recreating visuals would be time-consuming or infeasible (e.g., tweaking objects in vacation photos or perfecting fine-grained details on a cute pup generated from scratch). Further, TGIE represents a substantial opportunity to improve training of foundational models themselves. Multimodal models require diverse data to train properly, and TGIE editing can enable the generation and recombination of high-quality and scalable synthetic data that, perhaps most importantly, can provide methods to optimize the distribution of training data along any given axis.

In “Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting”, to be presented at CVPR 2023, we introduce Imagen Editor, a state-of-the-art solution for the task of masked inpainting — i.e., when a user provides text instructions alongside an overlay or “mask” (usually generated within a drawing-type interface) indicating the area of the image they would like to modify. We also introduce EditBench, a method that gauges the quality of image editing models. EditBench goes beyond the commonly used coarse-grained “does this image match this text” methods, and drills down to various types of attributes, objects, and scenes for a more fine-grained understanding of model performance. In particular, it puts strong emphasis on the faithfulness of image-text alignment without losing sight of image quality.

Given an image, a user-defined mask, and a text prompt, Imagen Editor makes localized edits to the designated areas. The model meaningfully incorporates the user’s intent and performs photorealistic edits.

Imagen Editor

Imagen Editor is a diffusion-based model fine-tuned on Imagen for editing. It targets improved representations of linguistic inputs, fine-grained control and high-fidelity outputs. Imagen Editor takes three inputs from the user: 1) the image to be edited, 2) a binary mask to specify the edit region, and 3) a text prompt — all three inputs guide the output samples.

Imagen Editor depends on three core techniques for high-quality text-guided image inpainting. First, unlike prior inpainting models (e.g., Palette, Context Attention, Gated Convolution) that apply random box and stroke masks, Imagen Editor employs an object detector masking policy with an object detector module that produces object masks during training. Object masks are based on detected objects rather than random patches and allow for more principled alignment between edit text prompts and masked regions. Empirically, the method helps the model stave off the prevalent issue of the text prompt being ignored when masked regions are small or only partially cover an object (e.g., CogView2).

Random masks (left) frequently capture background or intersect object boundaries, defining regions that can be plausibly inpainted just from image context alone. Object masks (right) are harder to inpaint from image context alone, encouraging models to rely more on text inputs during training.

Next, during training and inference, Imagen Editor enhances high resolution editing by conditioning on full resolution (1024×1024 in this work), channel-wise concatenation of the input image and the mask (similar to SR3, Palette, and GLIDE). For the base diffusion 64×64 model and the 64×64→256×256 super-resolution models, we apply a parameterized downsampling convolution (e.g., convolution with a stride), which we empirically find to be critical for high fidelity.

Imagen is fine-tuned for image editing. All of the diffusion models, i.e., the base model and super-resolution (SR) models, are conditioned on high-resolution 1024×1024 image and mask inputs. To this end, new convolutional image encoders are introduced.

Finally, at inference we apply classifier-free guidance (CFG) to bias samples to a particular conditioning, in this case, text prompts. CFG interpolates between the text-conditioned and unconditioned model predictions to ensure strong alignment between the generated image and the input text prompt for text-guided image inpainting. We follow Imagen Video and use high guidance weights with guidance oscillation (a guidance schedule that oscillates within a value range of guidance weights). In the base model (the stage-1 64x diffusion), where ensuring strong alignment with text is most critical, we use a guidance weight schedule that oscillates between 1 and 30. We observe that high guidance weights combined with oscillating guidance result in the best trade-off between sample fidelity and text-image alignment.

EditBench

The EditBench dataset for text-guided image inpainting evaluation contains 240 images, with 120 generated and 120 natural images. Generated images are synthesized by Parti and natural images are drawn from the Visual Genome and Open Images datasets. EditBench captures a wide variety of language, image types, and levels of text prompt specificity (i.e., simple, rich, and full captions). Each example consists of (1) a masked input image, (2) an input text prompt, and (3) a high-quality output image used as reference for automatic metrics. To provide insight into the relative strengths and weaknesses of different models, EditBench prompts are designed to test fine-grained details along three categories: (1) attributes (e.g., material, color, shape, size, count); (2) object types (e.g., common, rare, text rendering); and (3) scenes (e.g., indoor, outdoor, realistic, or paintings). To understand how different specifications of prompts affect model performance, we provide three text prompt types: a single-attribute (Mask Simple) or a multi-attribute description of the masked object (Mask Rich) – or an entire image description (Full Image). Mask Rich, especially, probes the models’ ability to handle complex attribute binding and inclusion.

The full image is used as a reference for successful inpainting. The mask covers the target object with a free-form, non-hinting shape. We evaluate Mask Simple, Mask Rich and Full Image prompts, consistent with conventional text-to-image models.

Due to the intrinsic weaknesses in existing automatic evaluation metrics (CLIPScore and CLIP-R-Precision) for TGIE, we hold human evaluation as the gold standard for EditBench. In the section below, we demonstrate how EditBench is applied to model evaluation.

Evaluation

We evaluate the Imagen Editor model — with object masking (IM) and with random masking (IM-RM) — against comparable models, Stable Diffusion (SD) and DALL-E 2 (DL2). Imagen Editor outperforms these models by substantial margins across all EditBench evaluation categories.

For Full Image prompts, single-image human evaluation provides binary answers to confirm if the image matches the caption. For Mask Simple prompts, single-image human evaluation confirms if the object and attribute are properly rendered, and bound correctly (e.g., for a red cat, a white cat on a red table would be an incorrect binding). Side-by-side human evaluation uses Mask Rich prompts only for side-by-side comparisons between IM and each of the other three models (IM-RM, DL2, and SD), and indicates which image matches with the caption better for text-image alignment, and which image is most realistic.

Human evaluation. Full Image prompts elicit annotators’ overall impression of text-image alignment; Mask Simple and Mask Rich check for the correct inclusion of particular attributes, objects and attribute binding.

For single-image human evaluation, IM receives the highest ratings across-the-board (10–13% higher than the 2nd-highest performing model). For the rest, the performance order is IM-RM > DL2 > SD (with 3–6% difference) except for with Mask Simple, where IM-RM falls 4-8% behind. As relatively more semantic content is involved in Full and Mask Rich, we conjecture IM-RM and IM are benefited by the higher performing T5 XXL text encoder.

Single-image human evaluations of text-guided image inpainting on EditBench by prompt type. For Mask Simple and Mask Rich prompts, text-image alignment is correct if the edited image accurately includes every attribute and object specified in the prompt, including the correct attribute binding. Note that due to different evaluation designs, Full vs. Mask-only prompts, results are less directly comparable.

EditBench focuses on fine-grained annotation, so we evaluate models for object and attribute types. For object types, IM leads in all categories, performing 10–11% better than the 2nd-highest performing model in common, rare, and text-rendering.

Single-image human evaluations on EditBench Mask Simple by object type. As a cohort, models are better at object rendering than text-rendering.

For attribute types, IM is rated much higher (13–16%) than the 2nd highest performing model, except for in count, where DL2 is merely 1% behind.

Single-image human evaluations on EditBench Mask Simple by attribute type. Object masking improves adherence to prompt attributes across-the-board (IM vs. IM-RM).

Side-by-side compared with other models one-vs-one, IM leads in text alignment with a substantial margin, being preferred by annotators compared to SD, DL2, and IM-RM.

Side-by-side human evaluation of image realism & text-image alignment on EditBench Mask Rich prompts. For text-image alignment, Imagen Editor is preferred in all comparisons.

Finally, we illustrate a representative side-by-side comparative for all the models. See the paper for more examples.

Example model outputs for Mask Simple vs. Mask Rich prompts. Object masking improves Imagen Editor’s fine-grained adherence to the prompt compared to the same model trained with random masking.

Conclusion

We presented Imagen Editor and EditBench, making significant advancements in text-guided image inpainting and the evaluation thereof. Imagen Editor is a text-guided image inpainting fine-tuned from Imagen. EditBench is a comprehensive systematic benchmark for text-guided image inpainting, evaluating performance across multiple dimensions: attributes, objects, and scenes. Note that due to concerns in relation to responsible AI, we are not releasing Imagen Editor to the public. EditBench on the other hand is released in full for the benefit of the research community.

Acknowledgments

Thanks to Gunjan Baid, Nicole Brichtova, Sara Mahdavi, Kathy Meier-Hellstern, Zarana Parekh, Anusha Ramesh, Tris Warkentin, Austin Waters, and Vijay Vasudevan for their generous support. We give thanks to Igor Karpov, Isabel Kraus-Liang, Raghava Ram Pamidigantam, Mahesh Maddinala, and all the anonymous human annotators for their coordination to complete the human evaluation tasks. We are grateful to Huiwen Chang, Austin Tarango, and Douglas Eck for providing paper feedback. Thanks to Erica Moreira and Victor Gomes for help with resource coordination. Finally, thanks to the authors of DALL-E 2 for giving us permission to use their model outputs for research purposes.

Read More