We’re sharing a few new ways we’re applying our advancements in AI to make exploring information even more natural and intuitive.Read More
Google Research, 2022 & beyond: Algorithms for efficient deep learning
The explosion in deep learning a decade ago was catapulted in part by the convergence of new algorithms and architectures, a marked increase in data, and access to greater compute. In the last 10 years, AI and ML models have become bigger and more sophisticated — they’re deeper, more complex, with more parameters, and trained on much more data, resulting in some of the most transformative outcomes in the history of machine learning.
As these models increasingly find themselves deployed in production and business applications, the efficiency and costs of these models has gone from a minor consideration to a primary constraint. In response, Google has continued to invest heavily in ML efficiency, taking on the biggest challenges in (a) efficient architectures, (b) training efficiency, (c) data efficiency, and (d) inference efficiency. Beyond efficiency, there are a number of other challenges around factuality, security, privacy and freshness in these models. Below, we highlight a panoply of works that demonstrate Google Research’s efforts in developing new algorithms to address the above challenges.
Efficient architectures
A fundamental question is “Are there better ways of parameterizing a model to allow for greater efficiency?” In 2022, we focused on new techniques for infusing external knowledge by augmenting models via retrieved context; mixture of experts; and making transformers (which lie at the heart of most large ML models) more efficient.
Context-augmented models
In the quest for higher quality and efficiency, neural models can be augmented with external context from large databases or trainable memory. By leveraging retrieved context, a neural network may not have to memorize the huge amount of world knowledge within its internal parameters, leading to better parameter efficiency, interpretability and factuality.
In “Decoupled Context Processing for Context Augmented Language Modeling”, we explored a simple architecture for incorporating external context into language models based on a decoupled encoder-decoder architecture. This led to significant computational savings while giving competitive results on auto-regressive language modeling and open domain question answering tasks. However, pre-trained large language models (LLMs) consume a significant amount of information through self-supervision on big training sets. But, it is unclear precisely how the “world knowledge” of such models interacts with the presented context. With knowledge aware fine-tuning (KAFT), we strengthen both controllability and robustness of LLMs by incorporating counterfactual and irrelevant contexts into standard supervised datasets.
One of the questions in the quest for a modular deep network is how a database of concepts with corresponding computational modules could be designed. We proposed a theoretical architecture that would “remember events” in the form of sketches stored in an external LSH table with pointers to modules that process such sketches.
Another challenge in context-augmented models is fast retrieval on accelerators of information from a large database. We have developed a TPU-based similarity search algorithm that aligns with the performance model of TPUs and gives analytical guarantees on expected recall, achieving peak performance. Search algorithms typically involve a large number of hyperparameters and design choices that make it hard to tune them on new tasks. We have proposed a new constrained optimization algorithm for automating hyperparameter tuning. Fixing the desired cost or recall as input, the proposed algorithm generates tunings that empirically are very close to the speed-recall Pareto frontier and give leading performance on standard benchmarks.
Mixture-of-experts models
Mixture-of-experts (MoE) models have proven to be an effective means of increasing neural network model capacity without overly increasing their computational cost. The basic idea of MoEs is to construct a network from a number of expert sub-networks, where each input is processed by a suitable subset of experts. Thus, compared to a standard neural network, MoEs invoke only a small portion of the overall model, resulting in high efficiency as shown in language model applications such as GLaM.
The decision of which experts should be active for a given input is determined by a routing function, the design of which is challenging, since one would like to prevent both under- and over-utilization of each expert. In a recent work, we proposed Expert Choice Routing, a new routing mechanism that, instead of assigning each input token to the top-k experts, assigns each expert to the top-k tokens. This automatically ensures load-balancing of experts while also naturally allowing for an input token to be handled by multiple experts.
Efficient transformers
Transformers are popular sequence-to-sequence models that have shown remarkable success in a range of challenging problems from vision to natural language understanding. A central component of such models is the attention layer, which identifies the similarity between “queries” and “keys”, and uses these to construct a suitable weighted combination of “values”. While effective, attention mechanisms have poor (i.e., quadratic) scaling with sequence length.
As the scale of transformers continues to grow, it is interesting to study if there are any naturally occurring structures or patterns in the learned models that may help us decipher how they work. Towards that, we studied the learned embeddings in intermediate MLP layers, revealing that they are very sparse — e.g, T5-Large models have <1% nonzero entries. Sparsity further suggests that we can potentially reduce FLOPs without affecting model performance.
We recently proposed Treeformer, an alternative to standard attention computation that relies on decision trees. Intuitively, this quickly identifies a small subset of keys that are relevant for a query and only performs the attention operation on this set. Empirically, the Treeformer can lead to a 30x reduction in FLOPs for the attention layer. We also introduced Sequential Attention, a differentiable feature selection method that combines attention with a greedy algorithm. This technique has strong provable guarantees for linear models and scales seamlessly to large embedding models.
Another way to make transformers efficient is by making the softmax computations faster in the attention layer. Building on our previous work on low-rank approximation of the softmax kernel, we proposed a new class of random features that provides the first “positive and bounded” random feature approximation of the softmax kernel and is computationally linear in the sequence length. We also proposed the first approach for incorporating various attention masking mechanisms, such as causal and relative position encoding, in a scalable manner (i.e., sub-quadratic with relation to the input sequence length).
Training efficiency
Efficient optimization methods are the cornerstone of modern ML applications and are particularly crucial in large scale settings. In such settings, even first order adaptive methods like Adam are often expensive, and training stability becomes challenging. In addition, these approaches are often agnostic to the architecture of the neural network, thereby ignoring the rich structure of the architecture leading to inefficient training. This motivates new techniques to more efficiently and effectively optimize modern neural network models. We are developing new architecture-aware training techniques, e.g., for training transformer networks, including new scale-invariant transformer networks and novel clipping methods that, when combined with vanilla stochastic gradient descent (SGD), results in faster training. Using this approach, for the first time, we were able to effectively train BERT using simple SGD without the need for adaptivity.
Moreover, with LocoProp we proposed a new method that achieves performance similar to that of a second-order optimizer while using the same computational and memory resources as a first-order optimizer. LocoProp takes a modular view of neural networks by decomposing them into a composition of layers. Each layer is then allowed to have its own loss function as well as output target and weight regularizer. With this setup, after a suitable forward-backward pass, LocoProp proceeds to perform parallel updates to each layer’s “local loss”. In fact, these updates can be shown to resemble those of higher-order optimizers, both theoretically and empirically. On a deep autoencoder benchmark, LocoProp achieves performance comparable to that of higher-order optimizers while being significantly faster.
One key assumption in optimizers like SGD is that each data point is sampled independently and identically from a distribution. This is unfortunately hard to satisfy in practical settings such as reinforcement learning, where the model (or agent) has to learn from data generated based on its own predictions. We proposed a new algorithmic approach named SGD with reverse experience replay, which finds optimal solutions in several settings like linear dynamical systems, non-linear dynamical systems, and in Q-learning for reinforcement learning. Furthermore, an enhanced version of this method — IER — turns out to be the state of the art and is the most stable experience replay technique on a variety of popular RL benchmarks.
Data efficiency
For many tasks, deep neural networks heavily rely on large datasets. In addition to the storage costs and potential security/privacy concerns that come along with large datasets, training modern deep neural networks on such datasets incurs high computational costs. One promising way to solve this problem is with data subset selection, where the learner aims to find the most informative subset from a large number of training samples to approximate (or even improve upon) training with the entire training set.
We analyzed a subset selection framework designed to work with arbitrary model families in a practical batch setting. In such a setting, a learner can sample examples one at a time, accessing both the context and true label, but in order to limit overhead costs, is only able to update its state (i.e., further train model weights) once a large enough batch of examples is selected. We developed an algorithm, called IWeS, that selects examples by importance sampling where the sampling probability assigned to each example is based on the entropy of models trained on previously selected batches. We provide a theoretical analysis, proving generalization and sampling rate bounds.
Another concern with training large networks is that they can be highly sensitive to distribution shifts between training data and data seen at deployment time, especially when working with limited amounts of training data that might not cover all of deployment time scenarios. A recent line of work has hypothesized “extreme simplicity bias” as the key issue behind this brittleness of neural networks. Our latest work makes this hypothesis actionable, leading to two new complementary approaches — DAFT and FRR — that when combined provide significantly more robust neural networks. In particular, these two approaches use adversarial fine-tuning along with inverse feature predictions to make the learned network robust.
Inference efficiency
Increasing the size of neural networks has proven surprisingly effective in improving their predictive accuracy. However, it is challenging to realize these gains in the real-world, as the inference costs of large models may be prohibitively high for deployment. This motivates strategies to improve the serving efficiency, without sacrificing accuracy. In 2022, we studied different strategies to achieve this, notably those based on knowledge distillation and adaptive computation.
Distillation
Distillation is a simple yet effective method for model compression, which greatly expands the potential applicability of large neural models. Distillation has proved widely effective in a range of practical applications, such as ads recommendation. Most use-cases of distillation involve a direct application of the basic recipe to the given domain, with limited understanding of when and why this ought to work. Our research this year has looked at tailoring distillation to specific settings and formally studying the factors that govern the success of distillation.
On the algorithmic side, by carefully modeling the noise in the teacher labels, we developed a principled approach to reweight the training examples, and a robust method to sample a subset of data to have the teacher label. In “Teacher Guided Training”, we presented a new distillation framework: rather than passively using the teacher to annotate a fixed dataset, we actively use the teacher to guide the selection of informative samples to annotate. This makes the distillation process shine in limited data or long-tail settings.
We also researched new recipes for distillation from a cross-encoder (e.g., BERT) to a factorized dual-encoder, an important setting for the task of scoring the relevance of a [query, document] pair. We studied the reasons for the performance gap between cross- and dual-encoders, noting that this can be the result of generalization rather than capacity limitation in dual-encoders. The careful construction of the loss function for distillation can mitigate this and reduce the gap between cross- and dual-encoder performance. Subsequently, in EmbedDistil, we looked at further improving dual-encoder distillation by matching embeddings from the teacher model. This strategy can also be used to distill from a large to small dual-encoder model, wherein inheriting and freezing the teacher’s document embeddings can prove highly effective.
On the theoretical side, we provided a new perspective on distillation through the lens of supervision complexity, a measure of how well the student can predict the teacher labels. Drawing on neural tangent kernel (NTK) theory, this offers conceptual insights, such as the fact that a capacity gap may affect distillation because such teachers’ labels may appear akin to purely random labels to the student. We further demonstrated that distillation can cause the student to underfit points the teacher model finds “hard” to model. Intuitively, this may help the student focus its limited capacity on those samples that it can reasonably model.
Adaptive computation
While distillation is an effective means of reducing inference cost, it does so uniformly across all samples. Intuitively however, some “easy” samples may inherently require less compute than the “hard” samples. The goal of adaptive compute is to design mechanisms that enable such sample-dependent computation.
Confident Adaptive Language Modeling introduced a controlled early-exit functionality to Transformer-based text generators such as T5. In this form of adaptive computation, the model dynamically modifies the number of transformer layers that it uses per decoding step. The early-exit gates use a confidence measure with a decision threshold that is calibrated to satisfy statistical performance guarantees. In this way, the model needs to compute the full stack of decoder layers for only the most challenging predictions. Easier predictions only require computing a few decoder layers. In practice, the model uses about a third of the layers for prediction on average, yielding 2–3x speed-ups while preserving the same level of generation quality.
One popular adaptive compute mechanism is a cascade of two or more base models. A key issue in using cascades is deciding whether to simply use the current model’s predictions, or whether to defer prediction to a downstream model. Learning when to defer requires designing a suitable loss function, which can leverage appropriate signals to act as supervision for the deferral decision. We formally studied existing loss functions for this goal, demonstrating that they may underfit the training sample owing to an implicit application of label smoothing. We showed that one can mitigate this with post-hoc training of a deferral rule, which does not require modifying the model internals in any way.
For the retrieval applications, standard semantic search techniques use a fixed representation for each embedding generated by a large model. That is, irrespective of downstream task and its associated compute environment or constraints, the representation size and capability is mostly fixed. Matryoshka representation learning introduces flexibility to adapt representations according to the deployment environment. That is, it forces representations to have a natural ordering within its coordinates such that for resource constrained environments, we can use only the top few coordinates of the representation, while for richer and precision-critical settings, we can use more coordinates of the representation. When combined with standard approximate nearest neighbor search techniques like ScaNN, MRL is able to provide up to 16x lower compute with the same recall and accuracy metrics.
Concluding thoughts
Large ML models are showing transformational outcomes in several domains but efficiency in both training and inference is emerging as a critical need to make these models practical in the real-world. Google Research has been investing significantly in making large ML models efficient by developing new foundational techniques. This is an on-going effort and over the next several months we will continue to explore core challenges to make ML models even more robust and efficient.
Acknowledgements
The work in efficient deep learning is a collaboration among many researchers from Google Research, including Amr Ahmed, Ehsan Amid, Rohan Anil, Mohammad Hossein Bateni, Gantavya Bhatt, Srinadh Bhojanapalli, Zhifeng Chen, Felix Chern, Gui Citovsky, Andrew Dai, Andy Davis, Zihao Deng, Giulia DeSalvo, Nan Du, Avi Dubey, Matthew Fahrbach, Ruiqi Guo, Blake Hechtman, Yanping Huang, Prateek Jain, Wittawat Jitkrittum, Seungyeon Kim, Ravi Kumar, Aditya Kusupati, James Laudon, Quoc Le, Daliang Li, Zonglin Li, Lovish Madaan, David Majnemer, Aditya Menon, Don Metzler, Vahab Mirrokni, Vaishnavh Nagarajan, Harikrishna Narasimhan, Rina Panigrahy, Srikumar Ramalingam, Ankit Singh Rawat, Sashank Reddi, Aniket Rege, Afshin Rostamizadeh, Tal Schuster, Si Si, Apurv Suman, Phil Sun, Erik Vee, Chong You, Felix Yu, Manzil Zaheer, and Yanqi Zhou.
Google Research, 2022 & beyond
This was the fourth blog post in the “Google Research, 2022 & Beyond” series. Other posts in this series are listed in the table below:
Language Models | Computer Vision | Multimodal Models |
Generative Models | Responsible AI | ML & Computer Systems |
Efficient Deep Learning | Algorithmic Advances* | Robotics |
Health | General Science & Quantum | Community Engagement |
* Articles will be linked as they are released. |
An important next step on our AI journey
Introducing Bard, Google’s experimental conversational AI service powered by LaMDA — plus, new AI features in Search coming soon.Read More
Real-time tracking of wildfire boundaries using satellite imagery
As global temperatures rise, wildfires around the world are becoming more frequent and more dangerous. Their effects are felt by many communities as people evacuate their homes or suffer harm even from proximity to the fire and smoke.
As part of Google’s mission to help people access trusted information in critical moments, we use satellite imagery and machine learning (ML) to track wildfires and inform affected communities. Our wildfire tracker was recently expanded. It provides updated fire boundary information every 10–15 minutes, is more accurate than similar satellite products, and improves on our previous work. These boundaries are shown for large fires in the continental US, Mexico, and most of Canada and Australia. They are displayed, with additional information from local authorities, on Google Search and Google Maps, allowing people to keep safe and stay informed about potential dangers near them, their homes or loved ones.
![]() |
Real-time boundary tracking of the 2021-2022 Wrattonbully bushfire, shown as a red polygon in Google Maps. |
Inputs
Wildfire boundary tracking requires balancing spatial resolution and update frequency. The most scalable method to obtain frequent boundary updates is to use geostationary satellites, i.e., satellites that orbit the earth once every 24 hours. These satellites remain at a fixed point above Earth, providing continual coverage of the area surrounding that point. Specifically, our wildfire tracker models use the GOES-16 and GOES-18 satellites to cover North America, and the Himawari-9 and GK2A satellites to cover Australia. These provide continent-scale images every 10 minutes. The spatial resolution is 2km at nadir (the point directly below the satellite), and lower as one moves away from nadir. The goal here is to provide people with warnings as soon as possible, and refer them to authoritative sources for spatially precise, on-the-ground data, as necessary.
![]() |
Smoke plumes obscuring the 2018 Camp Fire in California. [Image from NASA Worldview] |
Determining the precise extent of a wildfire is nontrivial, since fires emit massive smoke plumes, which can spread far from the burn area and obscure the flames. Clouds and other meteorological phenomena further obscure the underlying fire. To overcome these challenges, it is common to rely on infrared (IR) frequencies, particularly in the 3–4 μm wavelength range. This is because wildfires (and similar hot surfaces) radiate considerably at this frequency band, and these emissions diffract with relatively minor distortions through smoke and other particulates in the atmosphere. This is illustrated in the figure below, which shows a multispectral image of a wildfire in Australia. The visible channels (blue, green, and red) mostly show the triangular smoke plume, while the 3.85 μm IR channel shows the ring-shaped burn pattern of the fire itself. Even with the added information from the IR bands, however, determining the exact extent of the fire remains challenging, as the fire has variable emission strength, and multiple other phenomena emit or reflect IR radiation.
![]() |
Himawari-8 hyperspectral image of a wildfire. Note the smoke plume in the visible channels (blue, green, and red), and the ring indicating the current burn area in the 3.85μm band. |
Model
Prior work on fire detection from satellite imagery is typically based on physics-based algorithms for identifying hotspots from multispectral imagery. For example, the National Oceanic and Atmospheric Administration (NOAA) fire product identifies potential wildfire pixels in each of the GOES satellites, primarily by relying on the 3.9 μm and 11.2 μm frequencies (with auxiliary information from two other frequency bands).
In our wildfire tracker, the model is trained on all satellite inputs, allowing it to learn the relative importance of different frequency bands. The model receives a sequence of the three most recent images from each band so as to compensate for temporary obstructions such as cloud cover. Additionally, the model receives inputs from two geostationary satellites, achieving a super-resolution effect whereby the detection accuracy improves upon the pixel size of either satellite. In North America, we also supply the aforementioned NOAA fire product as input. Finally, we compute the relative angles of the sun and the satellites, and provide these as additional input to the model.
All inputs are resampled to a uniform 1 km–square grid and fed into a convolutional neural network (CNN). We experimented with several architectures and settled on a CNN followed by a 1×1 convolutional layer to yield separate classification heads for fire and cloud pixels (shown below). The number of layers and their sizes are hyperparameters, which are optimized separately for Australia and North America. When a pixel is identified as a cloud, we override any fire detection since heavy clouds obscure underlying fires. Even so, separating the cloud classification task improves the performance of fire detection as we incentivize the system to better identify these edge cases.
![]() |
CNN architecture for the Australia model; a similar architecture was used for North America. Adding a cloud classification head improves fire classification performance. |
To train the network, we used thermal anomalies data from the MODIS and VIIRS polar-orbiting satellites as labels. MODIS and VIIRS have higher spatial accuracy (750–1000 meters) than the geostationary satellites we use as inputs. However, they cover a given location only once every few hours, which occasionally causes them to miss rapidly-advancing fires. Therefore, we use MODIS and VIIRS to construct a training set, but at inference time we rely on the high-frequency imagery from geostationary satellites.
Even when limiting attention to active fires, most pixels in an image are not currently burning. To reduce the model’s bias towards non-burning pixels, we upsampled fire pixels in the training set and applied focal loss to encourage improvements in the rare misclassified fire pixels.
![]() |
The progressing boundary of the 2022 McKinney fire, and a smaller nearby fire. |
Evaluation
High-resolution fire signals from polar-orbiting satellites are a plentiful source for training data. However, such satellites use sensors that are similar to geostationary satellites, which increases the risk of systemic labeling errors (e.g., cloud-related misdetections) being incorporated into the model. To evaluate our wildfire tracker model without such bias, we compared it against fire scars (i.e., the shape of the total burnt area) measured by local authorities. Fire scars are obtained after a fire has been contained and are more reliable than real-time fire detection techniques. We compare each fire scar to the union of all fire pixels detected in real time during the wildfire to obtain an image such as the one shown below. In this image, green represents correctly identified burn areas (true positive), yellow represents unburned areas detected as burn areas (false positive), and red represents burn areas that were not detected (false negative).
![]() |
Example evaluation for a single fire. Pixel size is 1km x 1km. |
We compare our models to official fire scars using the precision and recall metrics. To quantify the spatial severity of classification errors, we take the maximum distance between a false positive or false negative pixel and the nearest true positive fire pixel. We then average each metric across all fires. The results of the evaluation are summarized below. Most severe misdetections were found to be a result of errors in the official data, such as a missing scar for a nearby fire.
![]() |
Test set metrics comparing our models to official fire scars. |
We performed two additional experiments on wildfires in the United States (see table below). First, we evaluated an earlier model that relies only on NOAA’s GOES-16 and GOES-17 fire products. Our model outperforms this approach in all metrics considered, demonstrating that the raw satellite measurements can be used to enhance the existing NOAA fire product.
Next, we collected a new test set consisting of all large fires in the United States in 2022. This test set was not available during training because the model launched before the fire season began. Evaluating the performance on this test set shows performance in line with expectations from the original test set.
![]() |
Comparison between models on fires in the United States. |
Conclusion
Boundary tracking is part of Google’s wider commitment to bring accurate and up-to-date information to people in critical moments. This demonstrates how we use satellite imagery and ML to track wildfires, and provide real time support to affected people in times of crisis. In the future, we plan to keep improving the quality of our wildfire boundary tracking, to expand this service to more countries and continue our work helping fire authorities access critical information in real time.
Acknowledgements
This work is a collaboration between teams from Google Research, Google Maps and Crisis Response, with support from our partnerships and policy teams. We would also like to thank the fire authorities whom we partner with around the world.
Google Research, 2022 & beyond: ML & computer systems
Great machine learning (ML) research requires great systems. With the increasing sophistication of the algorithms and hardware in use today and with the scale at which they run, the complexity of the software necessary to carry out day-to-day tasks only increases. In this post, we provide an overview of the numerous advances made across Google this past year in systems for ML that enable us to support the serving and training of complex models while easing the complexity of implementation for end users. This blog post also highlights our research on leveraging ML itself to help improve and design the next generations of system stacks.
· Distributed systems for ML | · Programming languages for ML | |
· Hardware accelerators & ML | · ML for constrained search spaces | |
· ML for large-scale production systems | · AI & sustainability |
Distributed systems for ML
This year, we’ve made significant strides in improving our systems to better support large-scale computation in ML and scientific computing in general. The Google TPU hardware has been designed with scaling in mind since its inception, and each year we strive to push the boundaries even further. This year, we designed state-of-the-art serving techniques for large models, improved automatic partitioning of tensor programs and reworked the APIs of our libraries to make sure all of those developments are accessible to a wide audience of users.
One of our biggest efficiency improvements this year is the CollectiveEinsum strategy for evaluating the large scale matrix multiplication operations that are at the heart of neural networks. Unlike previously popular SPMD partitioning strategies that separate communication from device-local computation, this approach uses the fast TPU ICI links to overlap them, leading to up to 1.38x performance improvements. This algorithm was also a key component of our work on efficiently scaling Transformer inference, which presents a wide variety of strategies that trade off between latency and hardware utilization, reaching state-of-the-art model FLOPs utilization (MFU) of 76% in throughput-optimized configurations.
![]() |
An illustration of AllGather-Einsum with 2-way intra-layer model parallelism, proposed in CollectiveEinsum strategy. Top: Illustration of non-overlapped execution. Bottom: Illustration of the CollectiveEinsum technique. |
We have also integrated SPMD-style partitioning as a first class concept into both TensorFlow, with the DTensor extension, and JAX, with the redesigned array type. In both libraries, tensors that seem complete to the programmer can be transparently sharded over a number of devices just by attaching declarative layout annotations. In fact, both approaches are compatible with existing code written for single-device computations that can now scale into a multi-device program, usually without any code modifications!
Integrating SPMD partitioning into the core of our ML frameworks means that being able to infer and optimize the way array programs are mapped onto a larger set of devices is critical for performance. In the past, this motivated the development of GSPMD, an important milestone in this area. However, GSPMD relies heavily on heuristics, and it still sometimes requires non-trivial decisions to be made manually, which often results in suboptimal performance. To make partitioning inference fully automatic, we collaborated with external colleagues to develop Alpa, a fully automated system that explores strategies for both operator-level (model) parallelism and pipeline parallelism between larger sub-computations. It successfully matches hand-tuned performance on popular models such as Transformers, but is also capable of successfully scaling up other models, such as convolutional networks and mixture-of-experts models that often cause existing automated methods to struggle.
![]() |
Alpa overview. The inter-operator identifies the best way to assign a subgraph to a submesh. The intra-operator pass finds the best intra-operator parallelism plan for each pipeline stage. Finally, the runtime orchestration generates a static plan that orders the computation and communication. |
In a similar vein, the recently published Pathways system adds an additional layer of virtualization on top of the usual TPU runtime — accelerators are managed by long-lived processes instead of being allocated directly to users. A single end user can then connect to an arbitrary number of Pathways-controlled devices and write their program as if all the devices were attached directly to their process, even though in reality they may even span multiple data centers. Thanks to Pathways: (1) job startup time can be reduced, (2) it is easier to achieve fault tolerance, and (3) multitenancy becomes a viable option, enabling multiple jobs to be executed simultaneously for even more efficient hardware utilization. The ease with which Pathways enables computation spanning multiple TPU pods is crucial, as it lets us avoid future scaling bottlenecks.
![]() |
Pathways overview. Top Left: Distributed computation expressed as a Directed Acyclic Graph. Top Right: The resource manager allocates virtual slices of accelerator meshes for each compiled function (e.g., A, B, and C). Bottom: Centralized schedulers for gang-schedule computations that are then dispatched by per-shard executors. (See paper for details.) |
Another notable release is TensorStore, a new library for multi-dimensional array storage. TensorStore is particularly useful for training large language models (LLMs) with multi-controller runtimes, where every process only manages a subset of all parameters, all of which must be collated into a consistent checkpoint. TensorStore provides database-grade guarantees (ACID) for efficient and concurrent multi-dimensional array serialization into many storage backends (e.g., Google Cloud Storage, various filesystems, HTTP servers) and has been successfully used for compute-intensive workloads such as PaLM and reconstructions of the human cortex and fruit fly brain.
![]() |
A fly brain reconstruction for which the underlying data can be easily accessed and manipulated using TensorStore. |
Programming languages for ML
The robustness and correctness of our technical infrastructure are vital for ML efforts, which is why we remain committed to ensuring that it is built on a sound technical and theoretical basis, backed by cutting-edge research in programming languages and compiler construction.
We continued investing in the open-source MLIR compiler infrastructure, building a more controllable, composable and modular compiler stack. In addition, much progress has been made in code generation for sparse linear algebra and it is now possible to generate both dense and sparse code from almost identical MLIR programs. Finally, we also continued the development of the IREE compiler, preparing it for use on both powerful computers located in data centers and mobile devices such as smartphones.
On the more theoretical side we explored ways to formalize and verify the code-generation techniques we use. We also published a novel approach used to implement and formalize automatic differentiation (AD) systems, which are central to ML libraries. We decomposed the reverse-mode AD algorithm into three independent program transformations, which are significantly simpler and easier to verify, highlighting the unique features of JAX’s implementation.
Leveraging programming language techniques, such as abstract interpretation and program synthesis, we successfully reduced the number of resources required to perform a neural architecture search (NAS). This effort, 𝛼NAS, led to the discovery of more efficient models without degradation in accuracy.
In the past year, we published a number of new open-source libraries in the JAX ecosystem, Rax and T5X being just two examples. With the continued effort around jax2tf, JAX models can now be deployed on mobile devices using TensorFlow Lite and on the web using TensorFlow.js.
Hardware accelerators & ML
Hardware design for ML
The use of customized hardware, such as TPUs and GPUs, has shown tremendous benefits in terms of both performance gain and energy efficiency (hence reducing the carbon footprint). In a recent MLPerf competition, we set new performance records on five benchmarks on TPUs v4, achieving speedups that are on average 1.42x higher than the next fastest submission. However, in order to keep up with recent advances, we are also developing customized hardware architectures for specific popular models.
![]() |
TPUs demonstrated significant speedup in all five published benchmarks (MLPerf 2.0) over the fastest non-Google submission (NVIDIA on-premises). Taller bars are better. The numbers inside the bars represent the quantity of chips / accelerators used for each of the submissions. |
However, building a new hardware accelerator incurs high initial cost and requires significant development and deployment time. To make single-workload accelerators viable, the design cycle time has to be reduced. Full-stack Search Technique (FAST) addresses this problem by introducing a hardware accelerator search framework that simultaneously optimizes data path, scheduling, and important compiler decisions. FAST introduces an approximate template capable of describing diverse types of architectures and versatile memory hierarchy resulting in accelerators that improve single-workload performance per Thermal Design Power (known to highly correlate with performance per Total Cost of Ownership) by 3.7x compared to TPU v3. This shows that single-workload accelerators could be practical for moderate-sized datacenter deployments.
ML for hardware design
To automate the chip design process as much as possible, we continue to push the capabilities of ML at various stages of the hardware design, including high-level architectural exploration, verification, and placement and routing.
We recently open-sourced a distributed RL infrastructure called Circuit Training, along with a circuit environment described in our recent Nature paper. We used this infrastructure in production to produce macro placements for the latest generation of TPU chips. Tackling architectural exploration, PRIME introduces an ML-based approach for searching hardware design space that utilizes only existing data (e.g., from traditional accelerator design efforts) without any further hardware simulation. This approach alleviates the need to run time-consuming simulations, even when the set of target applications changes. PRIME improves performance over state-of-the-art simulation-driven methods by about 1.2x–1.5x while reducing the simulation time by 93%–99%. AutoApprox automatically generates approximate low-power deep learning accelerators without any accuracy loss by mapping each neural network layer to an appropriate approximation level.
![]() |
PRIME uses logged accelerator data, consisting of both feasible and infeasible accelerators, to train a conservative model, which is used to design accelerators while meeting design constraints. PRIME designs accelerators with up to 1.5x smaller latency, while reducing the required hardware simulation time by up to 99%. |
Hardware-dependent model design
While NAS has shown tremendous capability in discovering state-of-the-art models in terms of accuracy and efficiency, it is still limited by lack of hardware knowledge. Platform-aware NAS addresses this gap by incorporating knowledge of the hardware architecture into the design of the NAS search space. The resulting EfficientNet-X model is 1.5x–2x faster than EfficientNet on TPU v3 and GPU v100, respectively, with similar accuracy. Both platform-aware NAS and EfficientNet-X have been deployed in production, demonstrating significant accuracy gains and up to ~40% efficiency improvement for various production vision models. NaaS goes even further by searching for neural network architectures and hardware architectures together. Using this approach on Edge TPUs, NaaS discovers vision models that are 2x more energy efficient with the same accuracy.
![]() |
Overview of platform-aware NAS on TPUs/GPUs, highlighting the search space and search objectives. |
ML for navigating constrained search spaces
Apart from changing the hardware and the workload for better efficiency, we can also optimize the middle layer, including the partitioner, which maps the workload onto multiple devices, and the compiler, which translates the workload into a low-level presentation understood by the hardware. In previous years, we demonstrated how we can apply ML to find better device placement and compiler decisions. In the past year, we further explored this direction and found that many optimization search spaces are heavily constrained, where valid solutions are quite sparse.
To address this challenge, we developed several techniques to enable a learned model to effectively navigate a constrained search space. Telamalloc employs a combination of ML model plus heuristics to make a decision when multiple options are available, and leverages a constraint solver to infer further dependent decisions. Telamalloc speeds up the memory allocation pass in the Edge TPU compiler compared to a production Integer Linear Programming approach and enables important real-world models that could not otherwise be supported.
“A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules” proposes a slightly different approach. It applies reinforcement learning (RL) to propose the decisions in a single step, and asks the constraint solver to adjust the proposed solution to be valid. For a BERT model on an Edge TPU-based multi-chip mesh, this approach discovers a better distribution of the model across devices using a much smaller time budget compared to non-learned search strategies.
ML for large-scale production systems
We also deployed ML to improve efficiency of various large-scale systems running in production. We recently released MLGO, the first industrial-grade general framework for integrating ML techniques systematically in the LLVM infrastructure. MLGO can replace heuristics in LLVM with an RL policy to make optimization decisions. When testing on a set of internal large-scale applications, we found that the trained policy can reduce binary size by 3%–7% when optimizing inlining decisions and can improve throughput by 0.3% ~1.5% when optimizing register allocation decisions. Within our production ML compiler, XLA, a learned cost model published a few years back, was recently deployed to guide the selection of optimal tile sizes of TPU kernels for top ML workloads, saving ~2% of the total TPU compute time in our data centers overall.We also recently replaced an existing heuristic in YouTube cache replacement algorithm with a new hybrid algorithm that combines a simple heuristic with a learned model, improving byte miss ratio at the peak by ~9%.
![]() |
Illustration of MLGO during inlining. “#bbs”, “#users”, and “callsite height” are example caller-callee pair features. |
AI & sustainability
Given the global climate change crisis, there has been understandable concern about the environmental impact of ML. In a recent paper, we showed that by following best practices, ML practitioners can reduce carbon dioxide equivalent emissions (CO2e) from training by orders of magnitude. We call the practices the “4Ms”
- Model. The first step is to select the most efficient ML model architecture. For example, Primer runs ~4x faster on the same hardware while achieving the same quality scores than the popular Transformer developed four years earlier.
- Machine. The second practice is to use the most energy efficient computer available. For example, when the Transformer model was first published in 2017, a popular GPU was the Nvidia P100. Using a recent processor optimized for ML training, such as TPU v4, improves performance per Watt by ~15x.
- Mechanization. Computers for training needed to be housed in a data center. Large cloud data centers are typically ~1.4x more energy-efficient than the typical smaller on-premise data center.
- Map. The biggest surprise in our investigation was the impact on the cleanliness of the energy supply by picking the best location. Moreover, in the cloud, location is the easiest of the four factors to change. The difference between a typical location and a well chosen location can be ~9x, even within the same country.
In this example, multiplying the 4Ms together yields a 4x × 15x × 1.4x × 9x or ~750x reduction in CO2e over four years by following the best practices over the training of the original Transformer model using GPUs of 2017.
We are continuing to explore this space and in 2023 we will be releasing a further study that demonstrates how to reduce the CO2e of current model training by up to 20x by carefully selecting the machine, mechanization and location of training.
Concluding thoughts
As the field of ML advances, we continue our investment in developing high-performance, energy-efficient, and easy-to-use systems and infrastructure to enable rapid exploration of new ideas. At the same time, we continue to explore the capability of ML to improve the performance of complex systems and automate labor-intensive tasks in system design.
Google Research, 2022 & beyond
This was the second blog post in the “Google Research, 2022 & Beyond” series. Other posts in this series are listed in the table below:
Language Models | Computer Vision | Multimodal Models |
Generative Models | Responsible AI | ML & Computer Systems |
Algorithms* | Robotics | Health |
General Science & Quantum | Community Engagement |
* Articles will be linked as they are released. |
Open Source Vizier: Towards reliable and flexible hyperparameter and blackbox optimization
Google Vizier is the de-facto system for blackbox optimization over objective functions and hyperparameters across Google, having serviced some of Google’s largest research efforts and optimized a wide range of products (e.g., Search, Ads, YouTube). For research, it has not only reduced language model latency for users, designed computer architectures, accelerated hardware, assisted protein discovery, and enhanced robotics, but also provided a reliable backend interface for users to search for neural architectures and evolve reinforcement learning algorithms. To operate at the scale of optimizing thousands of users’ critical systems and tuning millions of machine learning models, Google Vizier solved key design challenges in supporting diverse use cases and workflows, while remaining strongly fault-tolerant.
Today we are excited to announce Open Source (OSS) Vizier (with an accompanying systems whitepaper published at AutoML Conference 2022), a standalone Python package based on Google Vizier. OSS Vizier is designed for two main purposes: (1) managing and optimizing experiments at scale in a reliable and distributed manner for users, and (2) developing and benchmarking algorithms for automated machine learning (AutoML) researchers.
System design
OSS Vizier works by having a server provide services, namely the optimization of blackbox objectives, or functions, from multiple clients. In the main workflow, a client sends a remote procedure call (RPC) and asks for a suggestion (i.e., a proposed input for the client’s blackbox function), from which the service begins to spawn a worker to launch an algorithm (i.e., a Pythia policy) to compute the following suggestions. The suggestions are then evaluated by clients to form their corresponding objective values and measurements, which are sent back to the service. This pipeline is repeated multiple times to form an entire tuning trajectory.
The use of the ubiquitous gRPC library, which is compatible with most programming languages, such as C++ and Rust, allows maximum flexibility and customization, where the user can also write their own custom clients and even algorithms outside of the default Python interface. Since the entire process is saved to an SQL datastore, a smooth recovery is ensured after a crash, and usage patterns can be stored as valuable datasets for research into meta-learning and multitask transfer-learning methods such as the OptFormer and HyperBO.
Usage
Because of OSS Vizier’s emphasis as a service, in which clients can send requests to the server at any point in time, it is thus designed for a broad range of scenarios — the budget of evaluations, or trials, can range from tens to millions, and the evaluation latency can range from seconds to weeks. Evaluations can be done asynchronously (e.g., tuning an ML model) or in synchronous batches (e.g., wet lab settings involving multiple simultaneous experiments). Furthermore, evaluations may fail due to transient errors and be retried, or may fail due to persistent errors (e.g., the evaluation is impossible) and should not be retried.
This broadly supports a variety of applications, which include hyperparameter tuning deep learning models or optimizing non-computational objectives, which can be e.g., physical, chemical, biological, mechanical, or even human-evaluated, such as cookie recipes.
Integrations, algorithms, and benchmarks
As Google Vizier is heavily integrated with many of Google’s internal frameworks and products, OSS Vizier will naturally be heavily integrated with many of Google’s open source and external frameworks. Most prominently, OSS Vizier will serve as a distributed backend for PyGlove to allow large-scale evolutionary searches over combinatorial primitives such as neural architectures and reinforcement learning algorithms. Furthermore, OSS Vizier shares the same client-based API with Vertex Vizier, allowing users to quickly swap between open-source and production-quality services.
For AutoML researchers, OSS Vizier is also outfitted with a useful collection of algorithms and benchmarks (i.e., objective functions) unified under common APIs for assessing the strengths and weaknesses of proposed methods. Most notably, via TensorFlow Probability, researchers can now use the JAX-based Gaussian Process Bandit algorithm, based on the default algorithm in Google Vizier that tunes internal users’ objectives.
Resources and future direction
We provide links to the codebase, documentation, and systems whitepaper. We plan to allow user contributions, especially in the form of algorithms and benchmarks, and further integrate with the open-source AutoML ecosystem. Going forward, we hope to see OSS Vizier as a core tool for expanding research and development over blackbox optimization and hyperparameter tuning.
Acknowledgements
OSS Vizier was developed by members of the Google Vizier team in collaboration with the TensorFlow Probability team: Setareh Ariafar, Lior Belenki, Emily Fertig, Daniel Golovin, Tzu-Kuo Huang, Greg Kochanski, Chansoo Lee, Sagi Perel, Adrian Reyes, Xingyou (Richard) Song, and Richard Zhang.
In addition, we thank Srinivas Vasudevan, Jacob Burnim, Brian Patton, Ben Lee, Christopher Suter, and Rif A. Saurous for further TensorFlow Probability integrations, Daiyi Peng and Yifeng Lu for PyGlove integrations, Hao Li for Vertex/Cloud integrations, Yingjie Miao for AutoRL integrations, Tom Hennigan, Varun Godbole, Pavel Sountsov, Alexey Volkov, Mihir Paradkar, Richard Belleville, Bu Su Kim, Vytenis Sakenas, Yujin Tang, Yingtao Tian, and Yutian Chen for open source and infrastructure help, and George Dahl, Aleksandra Faust, Claire Cui, and Zoubin Ghahramani for discussions.
Finally we thank Tom Small for designing the animation for this post.
The Flan Collection: Advancing open source methods for instruction tuning
Language models are now capable of performing many new natural language processing (NLP) tasks by reading instructions, often that they hadn’t seen before. The ability to reason on new tasks is mostly credited to training models on a wide variety of unique instructions, known as “instruction tuning”, which was introduced by FLAN and extended in T0, Super-Natural Instructions, MetaICL, and InstructGPT. However, much of the data that drives these advances remain unreleased to the broader research community.
In “The Flan Collection: Designing Data and Methods for Effective Instruction Tuning”, we closely examine and release a newer and more extensive publicly available collection of tasks, templates, and methods for instruction tuning to advance the community’s ability to analyze and improve instruction-tuning methods. This collection was first used in Flan-T5 and Flan-PaLM, for which the latter achieved significant improvements over PaLM. We show that training a model on this collection yields improved performance over comparable public collections on all tested evaluation benchmarks, e.g., a 3%+ improvement on the 57 tasks in the Massive Multitask Language Understanding (MMLU) evaluation suite and 8% improvement on BigBench Hard (BBH). Analysis suggests the improvements stem both from the larger and more diverse set of tasks and from applying a set of simple training and data augmentation techniques that are cheap and easy to implement: mixing zero-shot, few-shot, and chain of thought prompts at training, enriching tasks with input inversion, and balancing task mixtures. Together, these methods enable the resulting language models to reason more competently over arbitrary tasks, even those for which it hasn’t seen any fine-tuning examples. We hope making these findings and resources publicly available will accelerate research into more powerful and general-purpose language models.
Public instruction tuning data collections
Since 2020, several instruction tuning task collections have been released in rapid succession, shown in the timeline below. Recent research has yet to coalesce around a unified set of techniques, with different sets of tasks, model sizes, and input formats all represented. This new collection, referred to below as “Flan 2022”, combines prior collections from FLAN, P3/T0, and Natural Instructions with new dialog, program synthesis, and complex reasoning tasks.
![]() |
A timeline of public instruction tuning collections, including: UnifiedQA, CrossFit, Natural Instructions, FLAN, P3/T0, MetaICL, ExT5, Super-Natural Instructions, mT0, Unnatural Instructions, Self-Instruct, and OPT-IML Bench. The table describes the release date, the task collection name, the model name, the base model(s) that were finetuned with this collection, the model size, whether the resulting model is Public (green) or Not Public (red), whether they train with zero-shot prompts (“ZS”), few-shot prompts (“FS”), chain-of-thought prompts (“CoT”) together (“+”) or separately (“/”), the number of tasks from this collection in Flan 2022, the total number of examples, and some notable methods, related to the collections, used in these works. Note that the number of tasks and examples vary under different assumptions and so are approximations. Counts for each are reported using task definitions from the respective works. |
In addition to scaling to more instructive training tasks, The Flan Collection combines training with different types of input-output specifications, including just instructions (zero-shot prompting), instructions with examples of the task (few-shot prompting), and instructions that ask for an explanation with the answer (chain of thought prompting). Except for InstructGPT, which leverages a collection of proprietary data, Flan 2022 is the first work to publicly demonstrate the strong benefits of mixing these prompting settings together during training. Instead of a trade-off between the various settings, mixing prompting settings during training improves all prompting settings at inference time, as shown below for both tasks held-in and held-out from the set of fine-tuning tasks.
Evaluating instruction tuning methods
To understand the overall effects of swapping one instruction tuning collection for another, we fine-tune equivalently-sized T5 models on popular public instruction-tuning collections, including Flan 2021, T0++, and Super-Natural Instructions. Each model is then evaluated on a set of tasks that are already included in each of the instruction tuning collections, a set of five chain-of-thought tasks, and then a set of 57 diverse tasks from the MMLU benchmark, both with zero-shot and few-shot prompts. In each case, the new Flan 2022 model, Flan-T5, outperforms these prior works, demonstrating a more powerful general-purpose NLP reasoner.
![]() |
Comparing public instruction tuning collections on held-in, chain-of-thought, and held-out evaluation suites, such as BigBench Hard and MMLU. All models except OPT-IML-Max (175B) are trained by us, using T5-XL with 3B parameters. Green text indicates improvement over the next best comparable T5-XL (3B) model. |
Single task fine-tuning
In applied settings, practitioners usually deploy NLP models fine-tuned specifically for one target task, where training data is already available. We examine this setting to understand how Flan-T5 compares to T5 models as a starting point for applied practitioners. Three settings are compared: fine-tuning T5 directly on the target task, using Flan-T5 without further fine-tuning on the target task, and fine-tuning Flan-T5 on the target task. For both held-in and held-out tasks, fine-tuning Flan-T5 offers an improvement over fine-tuning T5 directly. In some instances, usually where training data is limited for a target task, Flan-T5 without further fine-tuning outperforms T5 with direct fine-tuning.
![]() |
Flan-T5 outperforms T5 on single-task fine-tuning. We compare single-task fine-tuned T5 (blue bars), single-task fine-tuned Flan-T5 (red), and Flan-T5 without any further fine-tuning (beige). |
An additional benefit of using Flan-T5 as a starting point is that training is significantly faster and cheaper, converging more quickly than T5 fine-tuning, and usually peaking at higher accuracies. This suggests less task-specific training data may be necessary to achieve similar or better results on a particular task.
There are significant energy efficiency benefits for the NLP community to adopt instruction-tuned models like Flan-T5 for single task fine-tuning, rather than conventional non-instruction-tuned models. While pre-training and instruction fine-tuning are financially and computationally expensive, they are a one-time cost, usually amortized over millions of subsequent fine-tuning runs, which can become more costly in aggregate, for the most prominent models. Instruction-tuned models offer a promising solution in significantly reducing the amount of fine-tuning steps needed to achieve the same or better performance.
Conclusion
The new Flan instruction tuning collection unifies the most popular prior public collections and their methods, while adding new templates and simple improvements like training with mixed prompt settings. The resulting method outperforms Flan, P3, and Super-Natural Instructions on held-in, chain of thought, MMLU, and BBH benchmarks by 3–17% across zero-shot and few-shot variants. Results suggest this new collection serves as a more performant starting point for researchers and practitioners interested in both generalizing to new instructions or fine-tuning on a single new task.
Acknowledgements
It was a privilege to work with Jason Wei, Barret Zoph, Le Hou, Hyung Won Chung, Tu Vu, Albert Webson, Denny Zhou, and Quoc V Le on this project.
How AI is improving agriculture sustainability in India
A look at how AI can help agriculture and sustainable farming in India.Read More
Learning with Queried Hints
In many computing applications the system needs to make decisions to serve requests that arrive in an online fashion. Consider, for instance, the example of a navigation app that responds to driver requests. In such settings there is inherent uncertainty about important aspects of the problem. For example, the preferences of the driver with respect to features of the route are often unknown and the delays of road segments can be uncertain. The field of online machine learning studies such settings and provides various techniques for decision-making problems under uncertainty.
A very well known problem in this framework is the multi-armed bandit problem, in which the system has a set of n available options (arms) from which it is asked to choose in each round (user request), e.g., a set of precomputed alternative routes in navigation. The user’s satisfaction is measured by a reward that depends on unknown factors such as user preferences and road segment delays. An algorithm’s performance over T rounds is compared against the best fixed action in hindsight by means of the regret (the difference between the reward of the best arm and the reward obtained by the algorithm over all T rounds). In the experts variant of the multi-armed bandit problem, all rewards are observed after each round and not just the one played by the algorithm.
These problems have been extensively studied, and existing algorithms can achieve sublinear regret. For example, in the multi-armed bandit problem, the best existing algorithms can achieve regret that is of the order √T. However, these algorithms focus on optimizing for worst-case instances, and do not account for the abundance of available data in the real world that allows us to train machine learned models capable of aiding us in algorithm design.
In “Online Learning and Bandits with Queried Hints” (presented at ITCS 2023), we show how an ML model that provides us with a weak hint can significantly improve the performance of an algorithm in bandit-like settings. Many ML models are trained accurately using relevant past data. In the routing application, for example, specific past data can be used to estimate road segment delays and past feedback from drivers can be used to learn the quality of certain routes. Models trained with such data can, in certain cases, give very accurate feedback. However, our algorithms achieve strong guarantees even when the feedback from the model is in the form of a less explicit weak hint. Specifically, we merely ask that the model predict which of two options will be better. In the navigation application this is equivalent to having the algorithm pick two routes and query an ETA model for which of the two is faster, or presenting the user with two routes with different characteristics and letting them pick the one that is best for them. By designing algorithms that leverage such a hint we can: Improve the regret of the bandits setting on an exponential scale in terms of dependence on T and improve the regret of the experts setting from order of √T to become independent of T. Specifically, our upper bound only depends on the number of experts n and is at most log(n).
Algorithmic Ideas
Our algorithm for the bandits setting utilizes the well known upper confidence bound (UCB) algorithm. The UCB algorithm maintains, as a score for each arm, the average reward observed on that arm so far and adds to it an optimism parameter that becomes smaller with the number of times the arm has been pulled, thus balancing between exploration and exploitation. Our algorithm applies the UCB scores on pairs of arms, mainly in an effort to utilize the available pairwise comparison model that can designate the better of two arms. Each pair of arms i and j is grouped as a meta-arm (i, j) whose reward in each round is equal to the maximum reward between the two arms. Our algorithm observes the UCB scores of the meta-arms and picks the pair (i, j) that has the highest score. The pair of arms are then passed as a query to the ML auxiliary pairwise prediction model, which responds with the best of the two arms. This response is the arm that is finally used by the algorithm.
Our algorithm for the experts setting takes a follow-the-regularized-leader (FtRL) approach, which maintains the total reward of each expert and adds random noise to each, before picking the best for the current round. Our algorithm repeats this process twice, drawing random noise two times and picking the highest reward expert in each of the two iterations. The two selected experts are then used to query the auxiliary ML model. The model’s response for the best between the two experts is the one played by the algorithm.
Results
Our algorithms utilize the concept of weak hints to achieve strong improvements in terms of theoretical guarantees, including an exponential improvement in the dependence of regret on the time horizon or even removing this dependence altogether. To illustrate how the algorithm can outperform existing baseline solutions, we present a setting where 1 of the n candidate arms is consistently marginally better than the n-1 remaining arms. We compare our ML probing algorithm against a baseline that uses the standard UCB algorithm to pick the two arms to submit to the pairwise comparison model. We observe that the UCB baseline keeps accumulating regret whereas the probing algorithm quickly identifies the best arm and keeps playing it, without accumulating regret.
![]() |
An example in which our algorithm outperforms a UCB based baseline. The instance considers n arms, one of which is always marginally better than the remaining n-1. |
Conclusion
In this work we explore how a simple pairwise comparison ML model can provide simple hints that prove very powerful in settings such as the experts and bandits problems. In our paper we further present how these ideas apply to more complex settings such as online linear and convex optimization. We believe our model of hints can have more interesting applications in ML and combinatorial optimization problems.
Acknowledgements
We thank our co-authors Aditya Bhaskara (University of Utah), Sungjin Im (University of California, Merced), and Kamesh Munagala (Duke University).
Deciphering Clinical Abbreviations with Privacy Protecting ML
Today many people have digital access to their medical records, including their doctor’s clinical notes. However, clinical notes are hard to understand because of the specialized language that clinicians use, which contains unfamiliar shorthand and abbreviations. In fact, there are thousands of such abbreviations, many of which are specific to certain medical specialities and locales or can mean multiple things in different contexts. For example, a doctor might write in their clinical notes, “pt referred to pt for lbp“, which is meant to convey the statement: “Patient referred to physical therapy for low back pain.” Coming up with this translation is tough for laypeople and computers because some abbreviations are uncommon in everyday language (e.g., “lbp” means “low back pain”), and even familiar abbreviations, such as “pt” for “patient”, can have alternate meanings, such as “physical therapy.” To disambiguate between multiple meanings, the surrounding context must be considered. It’s no easy task to decipher all the meanings, and prior research suggests that expanding the shorthand and abbreviations can help patients better understand their health, diagnoses, and treatments.
In “Deciphering clinical abbreviations with a privacy protecting machine learning system”, published in Nature Communications, we report our findings on a general method that deciphers clinical abbreviations in a way that is both state-of-the-art and is on-par with board certified physicians in this task. We built the model using only public data on the web that wasn’t associated with any patient (i.e., no potentially sensitive data) and evaluated performance on real, de-identified notes from inpatient and outpatient clinicians from different health systems. To enable the model to generalize from web-data to notes, we created a way to algorithmically re-write large amounts of internet text to look as if it were written by a doctor (called web-scale reverse substitution), and we developed a novel inference method, (called elicitive inference).
![]() |
The model input is a string that may or may not contain medical abbreviations. We trained a model to output a corresponding string in which all abbreviations are simultaneously detected and expanded. If the input string does not contain an abbreviation, the model will output the original string. By Rajkomar et al used under CC BY 4.0/ Cropped from original. |
Rewriting Text to Include Medical Abbreviations
Building a system to translate doctors’ notes would usually start with a large, representative dataset of clinical text where all abbreviations are labeled with their meanings. But no such dataset for general use by researchers exists. We therefore sought to develop an automated way to create such a dataset but without the use of any actual patient notes, which might include sensitive data. We also wanted to ensure that models trained on this data would still work well on real clinical notes from multiple hospital sites and types of care, such as both outpatient and inpatient.
To do this, we referenced a dictionary of thousands of clinical abbreviations and their expansions, and found sentences on the web that contained uses of the expansions from this dictionary. We then “rewrote” those sentences by abbreviating each expansion, resulting in web data that looked like it was written by a doctor. For instance, if a website contained the phrase “patients with atrial fibrillation can have chest pain,” we would rewrite this sentence to “pts with af can have cp.” We then used the abbreviated text as input to the model, with the original text serving as the label. This approach provided us with large amounts of data to train our model to perform abbreviation expansion.
The idea of “reverse substituting” the long-forms for their abbreviations was introduced in prior research, but our distributed algorithm allows us to extend the technique to large, web-sized datasets. Our algorithm, called web-scale reverse substitution (WSRS), is designed to ensure that rare terms occur more frequently and common terms are down-sampled across the public web to derive a more balanced dataset. With this data in-hand, we trained a series of large transformer-based language models to expand the web text.
![]() |
We generate text to train our model on the decoding task by extracting phrases from public web pages that have corresponding medical abbreviations (shaded boxes on the left) and then substituting in the appropriate abbreviations (shaded dots, right). Since some words are found much more frequently than others (“patient” more than “posterior tibialis”, both of which can be abbreviated “pt”), we downsampled common expansions to derive a more balanced dataset across the thousands of abbreviations. By Rajkomar et al used under CC BY 4.0. |
Adapting Protein Alignment Algorithms to Unstructured Clinical Text
Evaluation of these models on the particular task of abbreviation expansion is difficult. Because they produce unstructured text as output, we had to figure out which abbreviations in the input correspond to which expansion in the output. To achieve this, we created a modified version of the Needleman Wunsch algorithm, which was originally designed for divergent sequence alignment in molecular biology, to align the model input and output and extract the corresponding abbreviation-expansion pairs. Using this alignment technique, we were able to evaluate the model’s capacity to detect and expand abbreviations accurately. We evaluated Text-to-Text Transfer Transformer (T5) models of various sizes (ranging from 60 million to over 60 billion parameters) and found that larger models performed translation better than smaller models, with the biggest model achieving the best performance.
Creating New Model Inference Techniques to Coax the Model
However, we did find something unexpected. When we evaluated the performance on multiple external test sets from real clinical notes, we found the models would leave some abbreviations unexpanded, and for larger models, the problem of incomplete expansion was even worse. This is mainly due to the fact that while we substitute expansions on the web for their abbreviations, we have no way of handling the abbreviations that are already present. This means that the abbreviations appear in both the original and rewritten text used as respective labels and input, and the model learns not to expand them.
To address this, we developed a new inference-chaining technique in which the model output is fed again as input to coax the model to make further expansions as long as the model is confident in the expansion. In technical terms, our best-performing technique, which we call elicitive inference, involves examining the outputs from a beam search above a certain log-likelihood threshold. Using elicitive inference, we were able to achieve state-of-the-art capability of expanding abbreviations in multiple external test sets.
![]() |
Real example of the model’s input (left) and output (right). |
Comparative Performance
We also sought to understand how patients and doctors currently perform at deciphering clinical notes, and how our model compared. We found that lay people (people without specific medical training) demonstrated less than 30% comprehension of the abbreviations present in the sample medical texts. When we allowed them to use Google Search, their comprehension increased to nearly 75%, still leaving 1 out of 5 abbreviations indecipherable. Unsurprisingly, medical students and trained physicians performed much better at the task with an accuracy of 90%. We found that our largest model was capable of matching or exceeding experts, with an accuracy of 98%.
How does the model perform so well compared to physicians in this task? There are two important factors in the model’s high comparative performance. Part of the discrepancy is that there were some abbreviations that clinicians did not even attempt to expand (such as “cm” for centimeter), which partly lowered the measured performance. This might seem unimportant, but for non-english speakers, these abbreviations may not be familiar, and so it may be helpful to have them written out. In contrast, our model is designed to comprehensively expand abbreviations. In addition, clinicians are familiar with abbreviations they commonly see in their speciality, but other specialists use shorthand that are not understood by those outside their fields. Our model is trained on thousands of abbreviations across multiple specialities and therefore can decipher a breadth of terms.
Towards Improved Health Literacy
We think there are numerous avenues in which large language models (LLMs) can help advance the health literacy of patients by augmenting the information they see and read. Most LLMs are trained on data that does not look like clinical note data, and the unique distribution of this data makes it challenging to deploy these models in an out-of-the-box fashion. We have demonstrated how to overcome this limitation. Our model also serves to “normalize” clinical note data, facilitating additional capabilities of ML to make the text easier for patients of all educational and health-literacy levels to understand.
Acknowledgements
This work was carried out in collaboration with Yuchen Liu, Jonas Kemp, Benny Li, Ming-Jun Chen, Yi Zhang, Afroz Mohiddin, and Juraj Gottweis. We thank Lisa Williams, Yun Liu, Arelene Chung, and Andrew Dai for many useful conversations and discussions about this work.